scholarly journals Aspects of Coatings on Buckypaper as a Study into the Expected Effects of Coatings on Carbon Nanotube Wires

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 743
Author(s):  
Jafet Arano ◽  
Jaime Bonilla-Rios ◽  
Enrique Barrera ◽  
Lucas Isenhart

Buckypaper (BP) was used as an accumulation of nanotubes to simulate as carbon nanotube (CNT) wires to study the interaction between four different insulating coating materials and CNTs. The wettability and electrical conductivity performance of each CNT/coating pair was assessed. The BP was prepared by filtering a sonicated solution of single-walled carbon nanotubes and N,N-Dimethylformamide, through a polytetrafluoroethylene (PTFE) membrane of 0.45 µm pore size. It was observed with Scanning Electron Microscopy, its chemical composition determined by X-ray Photoelectron Spectroscopy, its imperfections and purity measured by Raman Spectroscopy and the porosity (%) and pore distribution obtained by Nitrogen Physisorption. The results showed similar porosity and surface structure to that of reported CNT wires. The surface free energy of the BP was obtained through the Owens-Wendt method, and surface tension of the coatings was calculated with pendant drop measurements to find the adhesion and wettability parameters. Epoxy resin showed the highest wettability and adhesion, which resulted in infiltration into the BP that decreased electrical conductivity by 65%. In contrast, the insulating varnish showed much lower level of wettability and adhesion which resulted in the lowest decrease in conductivity (9.3%).

2019 ◽  
Vol 5 (3) ◽  
pp. 38 ◽  
Author(s):  
Pavan M. V. Raja ◽  
Gibran L. Esquenazi ◽  
Cathren E. Gowenlock ◽  
Daniel R. Jones ◽  
Jianhua Li ◽  
...  

Single walled carbon nanotubes (SWCNTs) are used as a component of a plating solution of CuSO4 for direct current electrodeposition of Cu–SWCNT composites with varying nanotube proportions without the use of either a surfactant, a dispersing agent, or functionalization of the SWCNTs. The Cu–SWCNT composites are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The composites are comprised of metallic Cu and SWCNTs with minor oxide impurities, as well as the residual (Fe) catalyst from the unpurified SWCNTs, in addition to displaying nanotube-mediated morphological differences. EDX analysis of carbon (wt%) is close to quantitative with respect to the wt% of SWCNTs added to the electrolysis solution. The presence of SWCNTs decreases the oxidation of the copper, as well as changing the identity of the oxide from CuO, for electrolysis of Cu, to Cu2O. Hard adherent Cu–SWCNT coatings are prepared by the addition of Cu powder to the electrolysis solution. The approach described in this paper will enable controlled synthesis of metal-nanomaterial composites that can potentially be processed further into high ampacity electrical conductors.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yuhua Xue ◽  
Hao Chen

Single walled carbon nanotubes (SWNTs) decorated with polyhedral oligomeric silsesquioxane (POSS) were synthesized via the amide linkages between the acid treated SWNTs and amine-functionalized POSS. The successful modification of SWNTs with POSS was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectra. The resulting SWNTs-POSS can be dispersed in both water and organic solutions. The biocompatibility and cytotoxicity of the SWNTs and SWNTs-POSS were evaluated by CCK-8 viability assays, which indicated that SWNTs-POSS exhibit very extremely low toxicity. The low toxicity of the POSS modified SWNTs leads to more opportunities for using carbon nanotubes in biomedical fields.


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2013 ◽  
Vol 12 (03) ◽  
pp. 1350017 ◽  
Author(s):  
MEGAN COATES ◽  
TEBELLO NYOKONG

Modification of nanomaterials through electrochemical grafting is a useful approach to introduce linking groups on to the surface of these structures. This work shows the possibility of applying electrochemical grafting to branched multiwalled carbon nanotube paper with an electrical resistance of 0.1 ohm-cm, and subsequent reaction of the grafted 4-azidobenzenediazonium with ethynylferrocene through the Sharpless click chemistry reaction. A comparison is made between this paper electrode and adsorbed single-walled carbon nanotubes on a glassy carbon electrode, with electrochemistry, X-ray photoelectron spectroscopy and scanning electrochemical microscopy used for characterization.


2007 ◽  
Vol 1039 ◽  
Author(s):  
Takako Nakamura ◽  
Tsuguyori Ohana

AbstractPhotolysis of cyclic disulfides in the presence of carbon materials such as diamond films and single-walled carbon nanotubes led to a surface modification to introduce thioalkylthiol functional groups, confirming by means of Raman, X-ray photoelectron spectroscopy and mass spectrometer measurements. The results on the value of S/C ratio of sulfur-modified diamond films depends on irradiation time by monitoring with XPS. Through thioalkylthiol moieties, an attachment of gold nanoparticles using self-assembly process was performed on carbon materials surfaces.


2016 ◽  
Vol 69 (2) ◽  
pp. 198 ◽  
Author(s):  
Hossein Reza Darabi ◽  
Atefeh Roozkhosh ◽  
Kioumars Aghapoor

A new and efficient method for the thioamidation of single-walled carbon nanotubes (SWCNTs) has been introduced by direct addition of an intermediately generated nitrogen-based nucleophile. In this approach, there is a synergistic effect between benzonitrile, CaH2, and thioacetic acid leading to the formation of calcium thiolate which subsequently added to the sidewalls of the tubes. This finding was also confirmed when SWCNTs with benzonitrile moieties on their sidewalls were tested. The successful covalent functionalization of SWCNTs has been proven by thermogravimetric analysis, Raman, IR, and X-ray photoelectron spectroscopy techniques.


Sign in / Sign up

Export Citation Format

Share Document