scholarly journals An Experimental Study on Centrality Measures Using Clustering

Computers ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 115
Author(s):  
Péter Marjai ◽  
Bence Szabari ◽  
Attila Kiss

Graphs can be found in almost every part of modern life: social networks, road networks, biology, and so on. Finding the most important node is a vital issue. Up to this date, numerous centrality measures were proposed to address this problem; however, each has its drawbacks, for example, not scaling well on large graphs. In this paper, we investigate the ranking efficiency and the execution time of a method that uses graph clustering to reduce the time that is needed to define the vital nodes. With graph clustering, the neighboring nodes representing communities are selected into groups. These groups are then used to create subgraphs from the original graph, which are smaller and easier to measure. To classify the efficiency, we investigate different aspects of accuracy. First, we compare the top 10 nodes that resulted from the original closeness and betweenness methods with the nodes that resulted from the use of this method. Then, we examine what percentage of the first n nodes are equal between the original and the clustered ranking. Centrality measures also assign a value to each node, so lastly we investigate the sum of the centrality values of the top n nodes. We also evaluate the runtime of the investigated method, and the original measures in plain implementation, with the use of a graph database. Based on our experiments, our method greatly reduces the time consumption of the investigated centrality measures, especially in the case of the Louvain algorithm. The first experiment regarding the accuracy yielded that the examination of the top 10 nodes is not good enough to properly evaluate the precision. The second experiment showed that the investigated algorithm in par with the Paris algorithm has around 45–60% accuracy in the case of betweenness centrality. On the other hand, the last experiment resulted that the investigated method has great accuracy in the case of closeness centrality especially in the case of Louvain clustering algorithm.




2020 ◽  
Vol 1 (2) ◽  
pp. 101-123
Author(s):  
Hiroaki Shiokawa ◽  
Yasunori Futamura

This paper addressed the problem of finding clusters included in graph-structured data such as Web graphs, social networks, and others. Graph clustering is one of the fundamental techniques for understanding structures present in the complex graphs such as Web pages, social networks, and others. In the Web and data mining communities, the modularity-based graph clustering algorithm is successfully used in many applications. However, it is difficult for the modularity-based methods to find fine-grained clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth. In this paper, we present a novel modularity-based algorithm, \textit{CAV}, that shows better clustering results than the traditional algorithm. The proposed algorithm employs a cohesiveness-aware vector partitioning into the graph spectral analysis to improve the clustering accuracy. Additionally, this paper also presents a novel efficient algorithm \textit{P-CAV} for further improving the clustering speed of CAV; P-CAV is an extension of CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive experiments on synthetic and public datasets demonstrate the performance superiority of our approaches over the state-of-the-art approaches.



Faktor Exacta ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 73
Author(s):  
Nurfidah Dwitiyanti ◽  
Septian Wulandari ◽  
Noni Selvia

<p>The population of Indonesia from year to year has increased. The increase in population must also be accompanied by increased economic growth in Indonesia. The increase in economic growth in Indonesia is marked by the reduction in the number of poor people in Indonesia. In addition, the increase in economic growth is reflected in the equitable distribution of public income in the country. Even though there are still many Indonesian people who are not yet prosperous in economic terms. To overcome, it is necessary to have clustering and characteristics of 34 provinces in Indonesia by implementing the Modification Maximum Standard Deviation Reduction (MMSDR) graph clustering algorithm. The data used are indicators of public welfare in 2017 obtained from the Central Statistics Agency. There are 9 indicators of community welfare used in this research. There are four stages in the MMSDR algorithm namely the "MST", "Subdivide", "Biggest Stepping" and "Create Clusters" processes. The results of this study can be seen from the distance between the nodes or between one province and another province produced 22 clusters. From the cluster results obtained using the MMSDR algorithm on welfare data, there are many clusters formed with cluster members formed at most two nodes (province).</p><p> Keywords: MMSDR, Clustering, Welfare of People</p>



2020 ◽  
Vol 2 (2) ◽  
pp. 125-146 ◽  
Author(s):  
Neda H. Bidoki ◽  
Alexander V. Mantzaris ◽  
Gita Sukthankar

This paper explores the value of weak-ties in classifying academic literature with the use of graph convolutional neural networks. Our experiments look at the results of treating weak-ties as if they were strong-ties to determine if that assumption improves performance. This is done by applying the methodological framework of the Simplified Graph Convolutional Neural Network (SGC) to two academic publication datasets: Cora and Citeseer. The performance of SGC is compared to the original Graph Convolutional Network (GCN) framework. We also examine how node removal affects prediction accuracy by selecting nodes according to different centrality measures. These experiments provide insight for which nodes are most important for the performance of SGC. When removal is based on a more localized selection of nodes, augmenting the network with both strong-ties and weak-ties provides a benefit, indicating that SGC successfully leverages local information of network nodes.



2016 ◽  
Vol 54 ◽  
pp. 121-135 ◽  
Author(s):  
Camila Pereira Santos ◽  
Desiree Maldonado Carvalho ◽  
Mariá C.V. Nascimento


Author(s):  
Son T. Mai ◽  
Martin Storgaard Dieu ◽  
Ira Assent ◽  
Jon Jacobsen ◽  
Jesper Kristensen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document