scholarly journals Halogen Bonding in New Dichloride-Cobalt(II) Complex with Iodo Substituted Chalcone Ligands

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 354 ◽  
Author(s):  
Lukáš Masaryk ◽  
Ján Moncol ◽  
Radovan Herchel ◽  
Ivan Nemec

The synthesis and properties of new chalcone ligand 4I-L ((2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one) and tetracoordinate Co(II) complex [Co(4I-L)2Cl2], (1a), are reported in this article. Upon recrystallization of 1a, the single crystals of [Co(4I-L)4Cl2]·2DMF·3Et2O (1b) were obtained and crystal structure was determined using X-ray diffraction. The non-covalent interactions in 1b were thoroughly analyzed and special attention was dedicated to interactions formed by the peripheral iodine substituents. The density functional theory (DFT), atoms in molecule (AIM) and noncovalent interaction (NCI) methods and electronic localization function (ELF) calculations were used to investigate halogen bond formed between the iodine functional groups and co-crystallized molecules of diethyl ether.

Author(s):  
Giuseppe M. Lombardo ◽  
Antonio Rescifina ◽  
Ugo Chiacchio ◽  
Alessia Bacchi ◽  
Francesco Punzo

The crystal structure of racemic dimethyl (4RS,5RS)-3-(4-nitrophenyl)-4,5-dihydroisoxazole-4,5-dicarboxylate, C13H12N2O7, has been determined by single-crystal X-ray diffraction. By analysing the degree of growth of the morphologically important crystal faces, a ranking of the most relevant non-covalent interactions determining the crystal structure can be inferred. The morphological information is considered with an approach opposite to the conventional one: instead of searching inside the structure for the potential key interactions and using them to calculate the crystal habit, the observed crystal morphology is used to define the preferential lines of growth of the crystal, and then this information is interpreted by means of density functional theory (DFT) calculations. Comparison with the X-ray structure confirms the validity of the strategy, thus suggesting this top–down approach to be a useful tool for crystal engineering.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1406
Author(s):  
Dmitriy F. Mertsalov ◽  
Rosa M. Gomila ◽  
Vladimir P. Zaytsev ◽  
Mikhail S. Grigoriev ◽  
Eugeniya V. Nikitina ◽  
...  

This manuscript reports the synthesis and X-ray characterization of two octahydro-1H-4,6-epoxycyclopenta[c]pyridin-1-one derivatives that contain the four most abundant halogen atoms (Ha) in the structure with the aim of studying the formation of Ha···Ha halogen bonding interactions. The anisotropy of electron density at the heavier halogen atoms provokes the formation of multiple Ha···Ha contacts in the solid state. That is, the heavier Ha-atoms exhibit a region of positive electrostatic potential (σ-hole) along the C–Ha bond and a belt of negative electrostatic potential (σ-lumps) around the atoms. The halogen bonding assemblies in both compounds were analyzed using density functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of “atom-in-molecules” (QTAIM), the noncovalent interaction plot (NCIplot), and the electron localization function (ELF).


CrystEngComm ◽  
2019 ◽  
Vol 21 (20) ◽  
pp. 3151-3157 ◽  
Author(s):  
Sarah N. Johnson ◽  
Thomas L. Ellington ◽  
Duong T. Ngo ◽  
Jorge L. Nevarez ◽  
Nicholas Sparks ◽  
...  

One co-crystal structure characterized to identify and quantify various non-covalent interactions with spectroscopy, X-ray crystallography and density functional theory computations.


Author(s):  
Kari Raatikainen ◽  
Massimo Cametti ◽  
Kari Rissanen

The series of haloanilinium and halopyridinium salts: 4-IPhNH3Cl (1), 4-IPhNH3Br (5), 4-IPhNH3H2PO4 (6), 4-ClPhNH3H2PO4 (8), 3-IPyBnCl (9), 3-IPyHCl (10) and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13), where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH3Cl (2, CCDC ref. code TAWRAL), 4-ClPhNH3Cl (3, CURGOL), 4-FPhNH3Cl (4, ANLCLA), 4-BrPhNH3H2PO4, (7, UGISEI), 3-BrPyHCl, (11, CIHBAX) and 3-ClPyHCl, (12, VOQMUJ) from Cambridge Structural Database for sake of comparison. Based on the X-ray data it was possible to highlight the balance between non-covalent forces acting in these systems, where the relative strength of the halogen bonding C–X···A− (X = I, Br or Cl) and the ratio between the halogen and hydrogen bonds [C–X···A− : D–H···A−] varied across the series.


2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Sławomir Michalik ◽  
Jan Małecki ◽  
Natalia Młynarczyk

AbstractA combined experimental and computational study of the dinuclear rhenium(V) complex containing (ReO)2(µ-O) core is presented in this article. The solid-state [Re2Cl4(O)2(µ-O)(3,5-lut)4] (3,5-lut = 3,5-dimethylpyridine) complex was characterised structurally (by single crystal X-ray diffraction) and spectroscopically (by IR, NMR, UV-VIS). The electronic structure was examined using the density functional theory (DFT) method. The spin-allowed electronic transitions were calculated using the time-dependent DFT method, and the UV-VIS spectrum was discussed.


2016 ◽  
Vol 20 (08n11) ◽  
pp. 1098-1113 ◽  
Author(s):  
Yang Li ◽  
Hannah M. Rhoda ◽  
Anthony M. Wertish ◽  
Victor N. Nemykin

A reaction between 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin and 1-bromopyrene resulted in the formation of 5,10,15,20-tetra[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (1), while cross-condensation between 4-(4-(pyrenyl-1)butoxy)benzaldehyde, ferrocenecaboxaldehyde, and pyrrole resulted in the formation of 5-ferrocenyl-10,15,20-tri[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (2), 5,10-diferrocenyl-15,20-di[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (3), and 5,15-diferrocenyl-10,20-di[4-(4-(pyrenyl-1)butoxy)phenyl]porphyrin (4). All pyrene-containing porphyrins were characterized by 1H NMR, UV-vis, MCD, and high-resolution ESI methods, while their electronic structures and the nature of the excited states were elucidated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The molecular structure of 1 and its fluorescence quenching upon the addition of C[Formula: see text] fullerene was also investigated using X-ray crystallography and steady-state fluorescence approaches.


Author(s):  
Rui Liu ◽  
Yuan Jun Gao ◽  
Wei Jun Jin

Single-crystal X-ray diffraction reveals a series of phosphorescent cocrystals which were assembled by 1,4-diiodotetrafluorobenzene (1,4-DITFB) and either 4,7-dimethyl-1,10-phenanthroline (DMPhe), 4,7-diphenyl-1,10-phenanthroline (DPPhe) or 4,7-dichloro-1,10-phenanthroline (DClPhe)viaC—I...N halogen bonding. These cocrystals, labeled (1), (2) and (3), respectively, are phosphorescent and a distinct change in phosphorescent color can be observed from orange–yellow, green to yellow–green, with well defined vibrational band maxima at 587, 520 and 611 nm for (1), (2) and (3). Based on the dependence of halogen bonding in sites and strength, we discussed the impact of substituents with different electron-withdrawing effects and steric hindrance on intermolecular noncovalent interactions and phosphorescence. The method of inducing and modulating phosphorescence by halogen bonding and other weak non-covalent interactions through changing the substituent groups of molecules should be significant in both theory and the application of optical function materials with predictable and modulated luminescent properties.


2014 ◽  
Vol 1052 ◽  
pp. 207-211
Author(s):  
Rui Ting Xue ◽  
Wei Song Sun ◽  
Si Rong Yu

The crystal structure of 1, 3-propanediol bis (4-aminobenzoate) has been determined by single crystal X-ray diffraction. The UV-vis spectra have been characterized experimentally. The nonlinear optical properties were investigated with the density functional theory method. The calculated first hyperpolarizability values are 7.69×10-30, 14.22×10-30 and 26.66×10-30 esu for the monomer, dimmer and trimer structure of the compound. The results show that the compound has high hyperpolarizability and the hyperpolarizability multipled along with the increasing number of the molecules.


CrystEngComm ◽  
2016 ◽  
Vol 18 (5) ◽  
pp. 683-690 ◽  
Author(s):  
G. Berger ◽  
K. Robeyns ◽  
J. Soubhye ◽  
R. Wintjens ◽  
F. Meyer

Four halogen-bonded organizations of a 1,2,2-triiodo-alkene involving geminal and/or vicinal iodine atoms were studied both by X-ray diffraction and density functional theory (DFT).


2004 ◽  
Vol 60 (5) ◽  
pp. 559-568 ◽  
Author(s):  
Riccardo Bianchi ◽  
Alessandra Forni ◽  
Tullio Pilati

The electron density of the halogen-bonded complex of 4,4′-dipyridyl-N,N′-dioxide (bpNO) with 1,4-diiodotetrafluorobenzene (F4dIb) at 90 K has been determined by X-ray diffraction and analysed. The nature of the I...O intermolecular bond connecting the bpNO and F4dIb molecules into one-dimensional infinite chains, as well as the other non-covalent interactions present in the crystal, such as C—H...O, C—H...F and C—H...I hydrogen bonds and C...C, C...N, C...I and F...F interactions, have been investigated. The integration of electron density over the atomic basins reveals the electrostatic nature of the I...O halogen bond, which is very similar to a previously analysed I...N halogen bond.


Sign in / Sign up

Export Citation Format

Share Document