scholarly journals Synthesis and Characterization of New Superconductors Materials

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 649
Author(s):  
Edmondo Gilioli ◽  
Davide Delmonte

In the last few decades, the persisting scientific interest in high temperature superconductor (HTS) cuprates has been accompanied by the search for new families of superconducting compounds (SPCs) [...]

Author(s):  
Gunter Heymann ◽  
Elisabeth Selb ◽  
Toni Buttlar ◽  
Oliver Janka ◽  
Martina Tribus ◽  
...  

By high-pressure/high-temperature multianvil synthesis a new high-pressure (HP) phase of Co3TeO6 was obtained. The compound crystallizes in the acentric trigonal crystal system of the Ni3TeO6-type structure with space group R3...


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2019 ◽  
Vol 16 ◽  
pp. 95-101
Author(s):  
Jelena Maletaškić ◽  
Jelena Luković ◽  
Katsumi Yoshida ◽  
Toyohiko Yano ◽  
Ryosuke S.S. Maki ◽  
...  

1996 ◽  
Vol 457 ◽  
Author(s):  
Lin-chiuan Yan ◽  
Levi T. Thompson

ABSTRACTNew methods have been developed for the synthesis of high surface area cation-substituted hexaaluminates. These materials were prepared by calcining high temperature (ethanol extraction) or low temperature (CO2 extraction) aerogels at temperatures up to 1600°C. Cation-substituted hexaaluminates have emerged as promising catalysts for use in high temperature catalytic combustion. In comparing unsubstituted and cation-substituted hexaaluminates, we found that the phase transformations were much cleaner for the cation-substituted materials. BaCO3 and BaAl2O4 were intermediates during transformation of the unsubstituted materials, while the cation-substituted materials transformed directly from an amorphous phase to crystalline hexaaluminate. Moreover, the presence of substitution cations caused the transformation to occur at lower temperatures. Mn seems to be a better substitution cation than Co since the Mn-substituted materials exhibited higher surface areas and better heat resistances than the Co-substituted materials. The low temperature aerogel-derived materials possessed quite different characteristics from the high temperature aerogel-derived materials. For example, phase transformation pathways were different.


2012 ◽  
Vol 75 ◽  
pp. 152-154 ◽  
Author(s):  
Su-Ching Hsiao ◽  
Chih-Ming Hsu ◽  
Szu-Ying Chen ◽  
Yu-Hsun Perng ◽  
Yu-Lun Chueh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document