scholarly journals Synthesis, Structure and Physical Properties of (trans-TTF-py2)1.5(PF6)·EtOH: A Molecular Conductor with Weak CH∙∙∙N Hydrogen Bondings

Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1081
Author(s):  
Shohei Koyama ◽  
Morio Kawai ◽  
Shinya Takaishi ◽  
Masahiro Yamashita ◽  
Norihisa Hoshino ◽  
...  

The studies of crystal structures with hydrogen bonds have been actively pursued because of their moderate stabilization energy for constructing unique structures. In this study, we synthesized a molecular conductor based on 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (trans-TTF-py2). Two pyridyl groups were introduced into the TTF skeleton toward the structural exploration in TTF-based molecular conductors involved by hydrogen bonds. In the obtained molecular conductor, (trans-TTF-py2)1.5(PF6)·EtOH, short contacts between the pyridyl group and the hydrogen atom of the TTF skeleton were observed, indicating that hydrogen bonding interactions were introduced in the crystal structure. Spectroscopic measurements and conductivity measurement revealed semiconducting behavior derived from π-stacked trans-TTF-py2 radical in the crystal structure. Finally, these results are discussed with the quantified hydrogen bonding stabilization energy, and the band calculation of the crystal obtained from density functional theory calculation.

2017 ◽  
Vol 53 (24) ◽  
pp. 3426-3429 ◽  
Author(s):  
Toshiki Higashino ◽  
Akira Ueda ◽  
Junya Yoshida ◽  
Hatsumi Mori

Stabilization of a metallic state was successfully achieved by applying hydrogen-bonding interactions in a novel benzothienobenzothiophene-based molecular conductor.


2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pomalidomide Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pomalidomide Form I crystallizes in the space group P-1 (#2) with a = 7.04742(9), b = 7.89103(27), c = 11.3106(6) Å, α = 73.2499(13), β = 80.9198(9), γ = 88.5969(6)°, V = 594.618(8) Å3, and Z = 2. The crystal structure is characterized by the parallel stacking of planes parallel to the bc-plane. Hydrogen bonds link the molecules into double layers also parallel to the bc-plane. Each of the amine hydrogen atoms acts as a donor to a carbonyl group in an N–H⋯O hydrogen bond, but only two of the four carbonyl groups act as acceptors in such hydrogen bonds. Other carbonyl groups participate in C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


Sign in / Sign up

Export Citation Format

Share Document