scholarly journals Isotope Effect in Thermal Conductivity of Polycrystalline CVD-Diamond: Experiment and Theory

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 322
Author(s):  
Alexander V. Inyushkin ◽  
Alexander N. Taldenkov ◽  
Victor G. Ralchenko ◽  
Andrey P. Bolshakov ◽  
Alexander V. Khomich

We measured the thermal conductivity κ(T) of polycrystalline diamond with natural (natC) and isotopically enriched (12C content up to 99.96 at.%) compositions over a broad temperature T range, from 5 to 410 K. The high quality polycrystalline diamond wafers were produced by microwave plasma chemical vapor deposition in CH4-H2 mixtures. The thermal conductivity of 12C diamond along the wafer, as precisely determined using a steady-state longitudinal heat flow method, exceeds much that of the natC sample at T>60 K. The enriched sample demonstrates the value of κ(298K)=25.1±0.5 W cm−1 K−1 that is higher than the ever reported conductivity of natural and synthetic single crystalline diamonds with natural isotopic composition. A phenomenological theoretical model based on the full version of Callaway theory of thermal conductivity is developed which provides a good approximation of the experimental data. The role of different resistive scattering processes, including due to minor isotope 13C atoms, defects, and grain boundaries, is estimated from the data analysis. The model predicts about a 37% increase of thermal conductivity for impurity and dislocation free polycrystalline chemical vapor deposition (CVD)-diamond with the 12C-enriched isotopic composition at room temperature.

2005 ◽  
Vol 20 (3) ◽  
pp. 703-711 ◽  
Author(s):  
Hou-Guang Chen ◽  
Li Chang

We report a unique morphology of diamond nanoplatelets synthesized by microwave plasma chemical vapor deposition on Ni coated polycrystalline diamond substrates. The diamond nanoplatelets were as thin as approximately 30 nm. Electron microscopy showed that the diamond nanoplatelets appear in a shape consisting of trapezoid and parallelogram tabular crystallites. Furthermore, the diamond nanoplatelets were single crystalline, as shown by electron diffraction. The edges of nanoplatelets were along the 〈110〉 direction with both the top and bottom tabular surfaces parallel to the {111} plane. Transmission electron microscopy revealed that the twinned planes are parallel to the platelet and side-face structure in ridge shape is bounded by {100} and {111} planes. Lateral growth of diamond nanoplatelet is believed to result from twin and ridge face structure. An oriented thin graphite layer was observed on some diamond nanoplatelets.


Sign in / Sign up

Export Citation Format

Share Document