scholarly journals Simulation and Analysis of Microring Electric Field Sensor Based on a Lithium Niobate-on-Insulator

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 359
Author(s):  
Zhenlin Wu ◽  
Yumeng Lin ◽  
Shaoshuai Han ◽  
Xiong Yin ◽  
Menghan Ding ◽  
...  

With the increasing sensitivity and accuracy of contemporary high-performance electronic information systems to electromagnetic energy, they are also very vulnerable to be damaged by high-energy electromagnetic fields. In this work, an all-dielectric electromagnetic field sensor is proposed based on a microring resonator structure. The sensor is designed to work at 35 GHz RF field using a lithium niobate-on-insulator (LNOI) material system. The 2.5-D variational finite difference time domain (varFDTD) and finite difference eigenmode (FDE) methods are utilized to analyze the single-mode condition, bending loss, as well as the transmission loss to achieve optimized waveguide dimensions. In order to obtain higher sensitivity, the quality factor (Q-factor) of the microring resonator is optimized to be 106 with the total ring circumference of 3766.59 μm. The lithium niobate layer is adopted in z-cut direction to utilize TM mode in the proposed all-dielectric electric field sensor, and with the help of the periodically poled lithium niobate (PPLN) technology, the electro-optic (EO) tunability of the device is enhanced to 48 pm·μm/V.

2006 ◽  
Vol 86 (1) ◽  
pp. 91-95 ◽  
Author(s):  
D. Runde ◽  
S. Brunken ◽  
C.E. Rüter ◽  
D. Kip

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 459 ◽  
Author(s):  
Jung

We studied photonic electric-field sensors using a 1 × 2 YBB-MZI modulator composed of two complementary outputs and a 3 dB directional coupler based on the electro-optic effect and titanium diffused lithium–niobate optical waveguides. The measured DC switching voltage and extinction ratio at the wavelength 1.3 μm were ~16.6 V and ~14.7 dB, respectively. The minimum detectable fields were ~1.12 V/m and ~3.3 V/m, corresponding to the ~22 dB and ~18 dB dynamic ranges of ~10 MHz and 50 MHz, respectively, for an rf power of 20 dBm. The sensor shows an almost linear response to the applied electric-field strength within the range of 0.29 V/m to 29.8 V/m.


2020 ◽  
Vol 140 (12) ◽  
pp. 599-600
Author(s):  
Kento Kato ◽  
Ken Kawamata ◽  
Shinobu Ishigami ◽  
Ryuji Osawa ◽  
Takeshi Ishida ◽  
...  

2020 ◽  
Vol 32 (23) ◽  
pp. 1501-1504
Author(s):  
Jiahong Zhang ◽  
Dubing Yang ◽  
Changsheng Zhang ◽  
Zhengang Zhao

Nano Letters ◽  
2021 ◽  
Author(s):  
Halleh B. Balch ◽  
Allister F. McGuire ◽  
Jason Horng ◽  
Hsin-Zon Tsai ◽  
Kevin K. Qi ◽  
...  

2012 ◽  
Author(s):  
Rong Zeng ◽  
Xiaoli Shen ◽  
Changsheng Li ◽  
Bo Wang

2021 ◽  
pp. 113244
Author(s):  
Yongcun Hao ◽  
Chenggang Wang ◽  
Zheng Sun ◽  
Zhao Zhang ◽  
Jin Guo ◽  
...  

2018 ◽  
Vol 36 (6) ◽  
pp. 614-622
Author(s):  
Dinesh Kumar ◽  
Neelam Rup Prakash ◽  
Sukhwinder Singh

Sign in / Sign up

Export Citation Format

Share Document