scholarly journals Engineering Crystal Packing in RNA-Protein Complexes II: A Historical Perspective from the Structural Studies of the Spliceosome

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 948 ◽  
Author(s):  
Adelaine Kwun-Wai Leung ◽  
Yasushi Kondo ◽  
Daniel A. Pomeranz Krummel ◽  
Jade Li ◽  
Stephen R. Price ◽  
...  

Cryo-electron microscopy has greatly advanced our understanding of how the spliceosome cycles through different conformational states to conduct the chemical reactions that remove introns from pre-mRNA transcripts. The Cryo-EM structures were built upon decades of crystallographic studies of various spliceosomal RNA-protein complexes. In this review we give an overview of the crystal structures solved in the Nagai group, utilizing many of the strategies to design crystal packing as described in the accompanying paper.

2021 ◽  
Vol 27 (S1) ◽  
pp. 3250-3250
Author(s):  
Viswanath Vittaladevaram ◽  
Kranthi Kuruti

AbstractThe key aspect for development of novel drug molecules is to perform structural determination of target molecule associated with its ligand. One such tool that provides insights towards structure of molecule is Cryo-electron microscopy which covers biological targets that are intractable. Examination of proteins can be carried out in native state, as the samples are frozen at -175 degree Celsius i.e. cryogenic temperatures. In addition to this, there were no limits for molecular and functional structures of proteins that can be imagined in 3-dimensional form. This includes ligands which unravel mechanisms that are biologically relevant. This will enable to better understand the mechanisms that are used for development of new therapeutics. Application of Cryo-electron microscopy is not limited to protein complexes and is considered as non-specific. Intervention of Cryo-EM would allow to analyse the structures and also able to dissect the interaction with therapeutic molecules. The study determines the usage of cryo-EM for providing resolutions that are acceptable for lead discovery. It also provides support for lead optimization and also for discovery of vaccines and therapeutics.


2019 ◽  
Vol 17 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Mauricio Toro-Nahuelpan ◽  
Ievgeniia Zagoriy ◽  
Fabrice Senger ◽  
Laurent Blanchoin ◽  
Manuel Théry ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Christopher J. Gisriel ◽  
Jimin Wang ◽  
Gary W. Brudvig ◽  
Donald A. Bryant

AbstractThe accurate assignment of cofactors in cryo-electron microscopy maps is crucial in determining protein function. This is particularly true for chlorophylls (Chls), for which small structural differences lead to important functional differences. Recent cryo-electron microscopy structures of Chl-containing protein complexes exemplify the difficulties in distinguishing Chl b and Chl f from Chl a. We use these structures as examples to discuss general issues arising from local resolution differences, properties of electrostatic potential maps, and the chemical environment which must be considered to make accurate assignments. We offer suggestions for how to improve the reliability of such assignments.


2004 ◽  
Vol 147 (3) ◽  
pp. 291-301 ◽  
Author(s):  
J.Bernard Heymann ◽  
James F. Conway ◽  
Alasdair C. Steven

2018 ◽  
Vol 74 (1) ◽  
pp. 65-66
Author(s):  
Guray Kuzu ◽  
Ozlem Keskin ◽  
Ruth Nussinov ◽  
Attila Gursoy

A revised Table 6 and Supporting Information are provided for the article by Kuzuet al.[(2016),Acta Cryst.D72, 1137–1148].


2021 ◽  
Vol 9 (1) ◽  
pp. 5-20
Author(s):  
Vittoria Raimondi ◽  
◽  
Alessandro Grinzato ◽  
◽  

<abstract> <p>In the last years, cryogenic-electron microscopy (cryo-EM) underwent the most impressive improvement compared to other techniques used in structural biology, such as X-ray crystallography and NMR. Electron microscopy was invented nearly one century ago but, up to the beginning of the last decades, the 3D maps produced through this technique were poorly detailed, justifying the term “blobbology” to appeal to cryo-EM. Recently, thanks to a new generation of microscopes and detectors, more efficient algorithms, and easier access to computational power, single particles cryo-EM can routinely produce 3D structures at resolutions comparable to those obtained with X-ray crystallography. However, unlike X-ray crystallography, which needs crystallized proteins, cryo-EM exploits purified samples in solution, allowing the study of proteins and protein complexes that are hard or even impossible to crystallize. For these reasons, single-particle cryo-EM is often the first choice of structural biologists today. Nevertheless, before starting a cryo-EM experiment, many drawbacks and limitations must be considered. Moreover, in practice, the process between the purified sample and the final structure could be trickier than initially expected. Based on these observations, this review aims to offer an overview of the principal technical aspects and setups to be considered while planning and performing a cryo-EM experiment.</p> </abstract>


2019 ◽  
Author(s):  
Yan Han ◽  
Alexis A Reyes ◽  
Sara Malik ◽  
Yuan He

AbstractThe multi-subunit chromatin remodeling complex SWI/SNF1–3 is highly conserved from yeast to humans and plays critical roles in various cellular processes including transcription and DNA damage repair4, 5. It uses the energy from ATP hydrolysis to remodel chromatin structure by sliding and evicting the histone octamer6–10, creating DNA regions that become accessible to other essential protein complexes. However, our mechanistic understanding of the chromatin remodeling activity is largely hindered by the lack of a high-resolution structure of any complex from this family. Here we report the first structure of SWI/SNF from the yeast S. cerevisiae bound to a nucleosome at near atomic resolution determined by cryo-electron microscopy (cryo-EM). In the structure, the Arp module is sandwiched between the ATPase and the Body module of the complex, with the Snf2 HSA domain connecting all modules. The HSA domain also extends into the Body and anchors at the opposite side of the complex. The Body contains an assembly scaffold composed of conserved subunits Snf12 (SMARCD/BAF60), Snf5 (SMARCB1/BAF47/ INI1) and an asymmetric dimer of Swi3 (SMARCC/BAF155/170). Another conserved subunit Swi1 (ARID1/BAF250) folds into an Armadillo (ARM) repeat domain that resides in the core of the SWI/SNF Body, acting as a molecular hub. In addition to the interaction between Snf2 and the nucleosome, we also observed interactions between the conserved Snf5 subunit and the histones at the acidic patch, which could serve as an anchor point during active DNA translocation. Our structure allows us to map and rationalize a subset of cancer-related mutations in the human SWI/SNF complex and propose a model of how SWI/SNF recognizes and remodels the +1 nucleosome to generate nucleosome-depleted regions during gene activation11–13.


Sign in / Sign up

Export Citation Format

Share Document