therapeutic molecules
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 203)

H-INDEX

38
(FIVE YEARS 11)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Hojun Choi ◽  
Hwayoung Yim ◽  
Cheolhyoung Park ◽  
So-Hee Ahn ◽  
Yura Ahn ◽  
...  

Among extracellular vesicles, exosomes have gained great attention for their role as therapeutic vehicles for delivering various active pharmaceutical ingredients (APIs). Exosomes “armed” with anti-cancer therapeutics possess great potential for an efficient intracellular delivery of anti-cancer APIs and enhanced targetability to tumor cells. Various technologies are being developed to efficiently incorporate anti-cancer APIs such as genetic materials (miRNA, siRNA, mRNA), chemotherapeutics, and proteins into exosomes and to induce targeted delivery to tumor burden by exosomal surface modification. Exosomes can incorporate the desired therapeutic molecules via direct exogenous methods (e.g., electroporation and sonication) or indirect methods by modifying cells to produce “armed” exosomes. The targeted delivery of “armed” exosomes to tumor burden could be accomplished either by “passive” targeting using the natural tropism of exosomes or by “active” targeting via the surface engineering of exosomal membranes. Although anti-cancer exosome therapeutics demonstrated promising results in preclinical studies, success in clinical trials requires thorough validation in terms of chemistry, manufacturing, and control techniques. While exosomes possess multiple advantages over synthetic nanoparticles, challenges remain in increasing the loading efficiency of anti-cancer agents into exosomes, as well as establishing quantitative and qualitative analytical methods for monitoring the delivery of in vivo administered exosomes and exosome-incorporated anti-cancer agents to the tumor parenchyma.


2022 ◽  
Author(s):  
Kan Hu ◽  
Aoyuan Cheng ◽  
Dingcheng Zhou ◽  
Yi Luo ◽  
Guoqing Zhang

Lipid nanovesicles (LNVs) and polymer nanovesicles (PNVs), also known as liposomes and polymersomes, are becoming increasingly vital in global health. One recent example is the widely distributed mRNA Covid-19 vaccines. However, the two major classes of nanovesicles both exhibit their own issues that significantly limit potential applications. Here, by covalently attaching a naturally occurring phosphate “lipid head” and a synthetic polylactide “polymer tail” via facile ring-opening polymerization on a 500-gram scale, a type of “chimeric” nanovesicles (CNVs) can be easily produced. Compared to LNVs, the reported CNVs exhibit reduced permeability for small and large molecules; on the other hand, the CNVs are less hydrophobic and exhibit enhanced tolerance toward proteins in buffer solutions without the need for hydrophilic polymeric corona such as poly(ethylene glycol), in contrast to conventional PNVs. The proof-of-concept in vitro delivery experiments using hydrophilic solutions of fluorescein-PEG, rhodamine-PEG, and anti-cancer drug doxorubicin demonstrate that these CNVs, as a structurally diverse class of nano-materials, are highly promising as alternative carriers for therapeutic molecules in translational nanomedicine.


Author(s):  
Saima Owais ◽  
Yasir Hasan Siddique

Abstract: Parkinson’s disease (PD) is the second most debilitating neurodegenerative movement disorder. It is characterized by the presence of fibrillar alpha-synuclein amassed in the neurons, known as Lewy bodies. Certain cellular and molecular events are involved leading to the degeneration of dopaminergic neurons. However, the origin and implication of such events are still uncertain. Nevertheless, the role of microRNAs (miRNAs) as important biomarkers and therapeutic molecules is unquestionable. The most challenging task by far in PD treatment has been its late diagnosis followed by therapeutics. miRNAs are an emerging hope to meet the need of early diagnosis, thereby promising an improved movement symptom and prolonged life of the patients. The continuous efforts in discovering the role of miRNAs could be made possible by the utilisation of various animal models of PD. These models help us to understand insights into the mechanism of the disease. Moreover, miRNAs have been surfaced as therapeutically important molecules with distinct delivery systems enhancing their success rate. This review aims at providing an outline of different miRNAs implicated in either PD-associated gene regulation or involved in therapeutics.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhi Qiao ◽  
Jinfeng Li ◽  
Hongwei Kou ◽  
Xiangrong Chen ◽  
Deming Bao ◽  
...  

Objective: Osteosarcoma is the most common malignancy in the skeletal system; studies showed an important role of miRNAs in tumorigenesis, indicating miRNAs as possible therapeutic molecules. This study found abnormal hsa-miR-557 expression levels in osteosarcoma and tried to explore the potential function and the mechanism.Methods: Differential expression genes of osteosarcoma were analyzed using GSE28423 from the GEO database. Survival analysis of miRNAs was conducted with data obtained from the TARGET-OS database. STRING and miRDIP were used to predict target genes of hsa-miR-557; KRAS was then verified using dual-luciferase reporter assay. Expression of genes was detected by qPCR, and levels of proteins were detected by Western blot. The proliferation ability of cells was detected by CCK-8 and cell cycle analysis. Tumor formation assay in nude mice was used to detect the influence of osteosarcoma by hsa-miR-557 in vivo.Results: Analysis from the GEO and TARGET databases found 12 miRNAs that are significantly related to the osteosarcoma prognosis, 7 downregulated (hsa-miR-140-3p, hsa-miR-564, hsa-miR-765, hsa-miR-1224-5p, hsa-miR-95, hsa-miR-940, and hsa-miR-557) and 5 upregulated (hsa-miR-362-3p, hsa-miR-149, hsa-miR-96, hsa-miR-744, and hsa-miR-769-5p). CCK-8 analysis and cell cycle analysis found that hsa-miR-557 could significantly inhibit the proliferation of osteosarcoma cells. The tumor formation assay in nude mice showed that tumor sizes and weights were inhibited by hsa-miR-557 transfection. Further studies also proved that hsa-miR-557 could target the 3′UTR of KRAS and modulate phosphorylation of downstream proteins.Conclusion: This study showed that hsa-miR-557 could inhibit osteosarcoma growth both in vivo and in vitro, by modulating KRAS expression.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 151
Author(s):  
Gloria Krapež ◽  
Katarina Kouter ◽  
Ivana Jovčevska ◽  
Alja Videtič Paska

Glioblastoma is simultaneously the most common and most aggressive primary brain tumor in the central nervous system, with poor patient survival and scarce treatment options. Most primary glioblastomas reoccur and evolve radio- and chemoresistant properties which make them resistant to further treatments. Based on gene mutations and expression profiles, glioblastoma is relatively well classified; however, research shows that there is more to glioblastoma biology than that defined solely by its genetic component. Specifically, the overall malignancy of the tumor is also influenced by the dynamic communication to its immediate and distant environment, as important messengers to neighboring cells in the tumor microenvironment extracellular vesicles (EVs) have been identified. EVs and their cargo can modulate the immune microenvironment and other physiological processes, and can interact with the host immune system. They are involved in tumor cell survival and metabolism, tumor initiation, progression, and therapy resistance. However, on the other hand EVs are thought to become an effective treatment alternative, since they can cross the blood–brain barrier, are able of specific cell-targeting and can be loaded with various therapeutic molecules.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Leo Hanke ◽  
Hrishikesh Das ◽  
Daniel J. Sheward ◽  
Laura Perez Vidakovics ◽  
Egon Urgard ◽  
...  

AbstractAntibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer–dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101124
Author(s):  
Elena Rensen ◽  
Stefano Pietropaoli ◽  
Florian Mueller ◽  
Christian Weber ◽  
Sylvie Souquere ◽  
...  

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 132
Author(s):  
Maria I. Falguera Uceda ◽  
Silvia Sánchez-Casanova ◽  
Clara Escudero-Duch ◽  
Nuria Vilaboa

Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alexander Suvorov ◽  
Tatiana Gupalova ◽  
Yulia Desheva ◽  
Tatiana Kramskaya ◽  
Elena Bormotova ◽  
...  

Contemporary SARS-Cov-2 pandemic, besides its dramatic global influence on the human race including health care systems, economies, and political decisions, opened a window for the global experiment with human vaccination employing novel injectable vaccines providing predominantly specific IgG response with little knowledge of their impact on the mucosal immunity. However, it is widely accepted that protection against the pathogens at the gates of the infection - on mucosal surfaces—predominantly rely on an IgA response. Some genetically modified bacteria, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Probiotic-based vaccines for mucous membranes are easy to produce in large quantities; they have low cost, provide quite a long T-cell memory, and gut IgA response to oral vaccines is highly synchronized and strongly oligoclonal. Here we present a study demonstrating construction of the novel SARS-Cov-2 vaccine candidate employing the gene fragment of S1 SARS-Cov-2 gene. This DNA fragment was inserted in frame into major pili protein gene with d2 domain of enterococcal operon encoding for pili. The DNA sequencing proved the presence of the insert in enterococcal genome. RNA transcription, immunoprecipitation, and immune electron microscopy with human sera obtained from the SARS-Cov-2 patients demonstrated expression of SARS-Cov-2 antigens in bacteria. Taken together the data obtained allowed considering this genetically modified probiotic strain as an interesting candidate for vaccine against SARS-Cov-2.


Author(s):  
nazila shabstani ◽  
Hanieh Mousazdeh ◽  
Fahimeh shyage ◽  
Somayeh Gholami ◽  
Nosratollah Zarghami

In this study, Dihydroartemisinin (DHART)-loaded polycaprolactone collagen nanofibers (PCL/Col NFs) were constructed as effective biocompatible scaffolds through adjusting the proportions of hydrophobic/ hydrophilic polymers for enhanced osteoblastic differentiation of human adipose-derived stem cells (hADSCs). The designed NFs were characterized through FTIR, XRD, TGA, FE-SEM, and tensile testing. DHART-loaded PCL/Col electrospun NFs provide an ideal solution, with the potential of sustained drug release as well as inhibition of drug re-crystallization. Interestingly, inhibiting DHART re-crystallization can improve its bioavailability, providing a more effective therapeutic efficacy. Besides, the data set found through FE-SEM, MTT, PicoGreen, qPCR, and alkaline phosphatase (ALP) assays revealed the improved adhesion and proliferation rate of hADSCs cultured on PCL/Col/DHART (5%) NFs after 14 and 21 days of incubation. These findings confirmed the potential of the designed NF scaffolds for sustained/controlled release of DHART therapeutic molecules toward bone tissue regeneration and engineering.


Sign in / Sign up

Export Citation Format

Share Document