scholarly journals Improving Stability and Colloidal Dispersity of CsPbBr3@SiO2 Nanoparticles Based on In-Situ Synthesis in Entropy Ligands Functionalized SiO2 Nanoreactor

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1165
Author(s):  
Tianju Chen ◽  
Peng Zhang ◽  
Guoliang Chen ◽  
Qi Yang ◽  
Feiming Li

Perovskite nanocrystals (PNCs) have witnessed unprecedented development in optoelectronic fields over the past few years. However, their intrinsic ionic structural instability still dramatically hinders their practical applications. Reliably improving the stability of PNCs while retaining their colloidal dispersity remains a grand challenge. Herein, we report a new strategy whereby CsPbBr3 nanoparticles are grown in situ in an entropy ligand-functionalized SiO2 nanoreactor. Consequently, the as-obtained CsPbBr3@SiO2 NPs show outstanding stability and colloidal dispersity in various non-polar solvents and have good solution processability, which are unattainable by conventional template-assisted methods.

Cellulose ◽  
2020 ◽  
Author(s):  
Joana C. Araújo ◽  
Diana P. Ferreira ◽  
Pilar Teixeira ◽  
Raul Fangueiro

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 157
Author(s):  
Xinjie Tan ◽  
Yongmin Wu ◽  
Weiping Tang ◽  
Shufeng Song ◽  
Jianyao Yao ◽  
...  

Composite polymer electrolytes provide an emerging solution for new battery development by replacing liquid electrolytes, which are commonly complexes of polyethylene oxide (PEO) with ceramic fillers. However, the agglomeration of fillers and weak interaction restrict their conductivities. By contrast with the prevailing methods of blending preformed ceramic fillers within the polymer matrix, here we proposed an in situ synthesis method of SiO2 nanoparticles in the PEO matrix. In this case, robust chemical interactions between SiO2 nanoparticles, lithium salt and PEO chains were induced by the in situ non-hydrolytic sol gel process. The in situ synthesized nanocomposite polymer electrolyte delivered an impressive ionic conductivity of ~1.1 × 10−4 S cm−1 at 30 °C, which is two orders of magnitude higher than that of the preformed synthesized composite polymer electrolyte. In addition, an extended electrochemical window of up to 5 V vs. Li/Li+ was achieved. The Li/nanocomposite polymer electrolyte/Li symmetric cell demonstrated a stable long-term cycling performance of over 700 h at 0.01–0.1 mA cm−2 without short circuiting. The all-solid-state battery consisting of the nanocomposite polymer electrolyte, Li metal and LiFePO4 provides a discharge capacity of 123.5 mAh g−1, a Coulombic efficiency above 99% and a good capacity retention of 70% after 100 cycles.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Yaqing Cen ◽  
Yuxue Yue ◽  
Saisai Wang ◽  
Jinyue Lu ◽  
Bolin Wang ◽  
...  

Adsorption and activation for substrates and the stability of Pd species in Pd-based catalysts are imperative for their wider adoption in industrial and practical applications. However, the influence factor of these aspects has remained unclear. This indicates a need to understand the various perceptions of the structure–function relationship that exists between microstructure and catalytic performance. Herein, we revisit the catalytic performance of supported-ionic-liquid-phase stabilized Pd-based catalysts with nitrogen-containing ligands as a promoter for acetylene hydrochlorination, and try to figure out their regulation. We found that the absolute value of the differential energy, |Eads(C2H2)-Eads(HCl)|, is negative correlated with the stability of palladium catalysts. These findings imply that the optimization of the electron structure provides a new strategy for designing highly active yet durable Pd-based catalysts.


Author(s):  
Zahra Abdi ◽  
Robabeh Bagheri ◽  
Mohammad Reza Mohammadi ◽  
Zhenlun Song ◽  
Mikaela Görlin ◽  
...  

Author(s):  
Thao A. Nguyen ◽  
Linn W. Hobbs

The low temperature phase relation of iron sulfide compounds Fe1-xS, with composition ranging from FeS to Fe7S8, has been investigated extensively over the past several decades. Despite these efforts conflicting reports on the stability of low temperature phases still exist and major disagreements between proposed phase diagrams remain unresolved. In this paper we report preliminary findings of our effort to determine whether the low temperature iron sulfide compounds form a homologous series Fen-l,Sn n≥ 8 [1] or a solid solution [2]. We have examined the stability of iron sulfide crystal of composition Fe9S10 using in situ heating experiment and image contrast transmission electron microscopy. We have found that Fe9S10 decomposes to two distinct phases. These two phases are labelled as H and K phases.


Author(s):  
Zahra Abdi ◽  
Robabeh Bagheri ◽  
Mohammad Reza Mohammadi ◽  
Zhenlun Song ◽  
Mikaela Görlin ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 2564-2573 ◽  
Author(s):  
Bahare Nozari ◽  
Majid Montazer ◽  
Mahnaz Mahmoudi Rad

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1816
Author(s):  
Zhibei Liu ◽  
Jiangang Li ◽  
Meijie Zhu ◽  
Li Wang ◽  
Yuqiong Kang ◽  
...  

Structural instability during cycling is an important factor affecting the electrochemical performance of nickel-rich ternary cathode materials for Li-ion batteries. In this work, enhanced structural stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials are achieved by Ga doping. Compared with the pristine electrode, Li[Ni0.6Co0.2Mn0.2]0.98Ga0.02O2 electrode exhibits remarkably improved electrochemical performance and thermal safety. At 0.5C rate, the discharge capacity increases from 169.3 mAh g−1 to 177 mAh g−1, and the capacity retention also rises from 82.8% to 89.8% after 50 cycles. In the charged state of 4.3 V, its exothermic temperature increases from 245.13 °C to more than 271.24 °C, and the total exothermic heat decreases from 561.7 to 225.6 J·g−1. Both AC impedance spectroscopy and in situ XRD analysis confirmed that Ga doping can improve the stability of the electrode/electrolyte interface structure and bulk structure during cycling, which helps to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material.


Sign in / Sign up

Export Citation Format

Share Document