scholarly journals Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 370
Author(s):  
Erika Rosengren ◽  
Arina Acatrinei ◽  
Nicolae Cruceru ◽  
Marianne Dehasque ◽  
Aritina Haliuc ◽  
...  

Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.

2021 ◽  
Author(s):  
Carmen Ortega-Sabater ◽  
Gabriel Fernandez-Calvo ◽  
Víctor M Pérez-García

Evolutionary dynamics allows to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote an explosive growth. In this paper we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. Here we address this question by means of stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations and elucidate the contribution of phenotypic transitions on tumour growth dynamics.


2020 ◽  
Vol 287 (1919) ◽  
pp. 20192818
Author(s):  
Estelle Laurent ◽  
Nicolas Schtickzelle ◽  
Staffan Jacob

Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.


2020 ◽  
Vol 375 (1814) ◽  
pp. 20190450 ◽  
Author(s):  
Dustin J. Marshall ◽  
Mariana Alvarez-Noriega

Global change will alter the distribution of organisms around the planet. While many studies have explored how different species, groups and traits might be re-arranged, few have explored how dispersal is likely to change under future conditions. Dispersal drives ecological and evolutionary dynamics of populations, determining resilience, persistence and spread. In marine systems, dispersal shows clear biogeographical patterns and is extremely dependent on temperature, so simple projections can be made regarding how dispersal potentials are likely to change owing to global warming under future thermal regimes. We use two proxies for dispersal—developmental mode and developmental duration. Species with a larval phase are more dispersive than those that lack a larval phase, and species that spend longer developing in the plankton are more dispersive than those that spend less time in the plankton. Here, we explore how the distribution of different development modes is likely to change based on current distributions. Next, we estimate how the temperature-dependence of development itself depends on the temperature in which the species lives, and use this estimate to project how developmental durations are likely to change in the future. We find that species with feeding larvae are likely to become more prevalent, extending their distribution poleward at the expense of species with aplanktonic development. We predict that developmental durations are likely to decrease, particularly in high latitudes where durations may decline by more than 90%. Overall, we anticipate significant changes to dispersal in marine environments, with species in the polar seas experiencing the greatest change. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.


2020 ◽  
Vol 17 (168) ◽  
pp. 20200174 ◽  
Author(s):  
Danyang Jia ◽  
Xinyu Wang ◽  
Zhao Song ◽  
Ivan Romić ◽  
Xuelong Li ◽  
...  

The progression of game theory from classical to evolutionary and spatial games provided a powerful means to study cooperation, and enabled a better understanding of general cooperation-promoting mechanisms. However, current standard models assume that at any given point players must choose either cooperation or defection, meaning that regardless of the spatial structure in which they exist, they cannot differentiate between their neighbours and adjust their behaviour accordingly. This is at odds with interactions among organisms in nature who are well capable of behaving differently towards different members of their communities. We account for this natural fact by introducing a new type of player—dubbed link players—who can adjust their behaviour to each individual neighbour. This is in contrast to more common node players whose behaviour affects all neighbours in the same way. We proceed to study cooperation in pure and mixed populations, showing that cooperation peaks at moderately low densities of link players. In such conditions, players naturally specialize in different roles. Node players tend to be either cooperators or defectors, while link players form social insulation between cooperative and defecting clusters by acting both as cooperators and defectors. Such fairly complex processes emerging from a simple model reflect some of the complexities observed in experimental studies on social behaviour in microbes and pave a way for the development of richer game models.


2011 ◽  
Vol 13 (12) ◽  
pp. 3399 ◽  
Author(s):  
P. Rumolo ◽  
M. Barra ◽  
S. Gherardi ◽  
E. Marsella ◽  
M. Sprovieri

2018 ◽  
Author(s):  
Daniel A. Beller ◽  
Kim M. J. Alards ◽  
Francesca Tesser ◽  
Ricardo A. Mosna ◽  
Federico Toschi ◽  
...  

AbstractThe expansion of a population into new habitat is a transient process that leaves its footprints in the genetic composition of the expanding population. How the structure: of the environment shapes the population front and the evolutionary dynamics during such a range expansion is little understood. Here, we investigate the evolutionary dynamics of populations consisting of many selectively neutral genotypes expanding on curved surfaces. Using a combination of individual-based off-lattice simulations, geometrical arguments, and lattice-based stepping-stone simulations, we characterise the effect of individual bumps on an otherwise flat surface. Compared to the case of a range expansion on a flat surface:, we observe a transient relative increase, followed by a decrease, in neutral genetic diversity at the population front. Ill addition, we find that individuals at the sides of the bump have a dramatically increased expected number of descendants, while their neighbours closer to the bump’s centre are far less lucky. Both observations can be explained using an analytical description of straight paths (geodesics) on the curved surface, Complementing previous studies of heterogeneous flat environments, the findings here build our understanding of how complex environments shape the evolutionary dynamics of expanding populations.


Geologos ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 79-84
Author(s):  
Dmitry A. Ruban

Abstract Possible plate tectonic controls on faunal diversity dynamics have been discussed in the geological literature for around 50 years. The new model of plate tectonic processes is here linked to Jurassic generic diversity (simple α-diversity) of brachiopods. This comparison offers three observations, four hypotheses and three unresolved issues. Most importantly, changes in the global plate root mean square speed coincided with brachiopod diversity dynamics, which can be explained hypothetically by either environmental disturbance triggered by more active plate motion or activity of any process (such as eustasy) tied to plate tectonic mechanisms and with an impact on marine benthic communities. It is also established that global generic diversity dynamics of brachiopods during the Jurassic coincided with the regional picture as established for the Northern Caucasus and the Swiss Jura Alps; this coincidence is difficult to explain with regard to plate tectonics. These and other speculative considerations do not clarify the role of the plate tectonic factor in Jurassic generic diversity dynamics of brachiopods, and, thus, they indicate important issues for further research.


2020 ◽  
Vol 125 (7) ◽  
pp. 1003-1012 ◽  
Author(s):  
Tia-Lynn Ashman ◽  
Conchita Alonso ◽  
Victor Parra-Tabla ◽  
Gerardo Arceo-Gómez

Abstract Background Pollen transfer via animals is necessary for reproduction by ~80 % of flowering plants, and most of these plants live in multispecies communities where they can share pollinators. While diffuse plant–pollinator interactions are increasingly recognized as the rule rather than the exception, their fitness consequences cannot be deduced from flower visitation alone, so other proxies, functionally closer to seed production and amenable for use in a broad variety of diverse communities, are necessary. Scope We conceptually summarize how the study of pollen on stigmas of spent flowers can reflect key drivers and functional aspects of the plant–pollinator interaction (e.g. competition, facilitation or commensalism). We critically evaluate how variable visitation rates and other factors (pollinator pool and floral avoidance) can give rise to different relationships between heterospecific pollen and (1) conspecific pollen on the stigma and (2) conspecific tubes/grain in the style, revealing the complexity of potential interpretations. We advise on best practices for using these proxies, noting the assumptions and caveats involved in their use, and explicate what additional data are required to verify interpretation of given patterns. Conclusions We conclude that characterizing pollen on stigmas of spent flowers provides an attainable indirect measure of pollination interactions, but given the complex processes of pollen transfer that generate patterns of conspecific–heterospecific pollen on stigmas these cannot alone determine whether competition or facilitation are the underlying drivers. Thus, functional tests are also needed to validate these hypotheses.


2015 ◽  
Vol 12 (102) ◽  
pp. 20141010 ◽  
Author(s):  
Susanna Manrubia ◽  
José A. Cuesta

Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives.


Sign in / Sign up

Export Citation Format

Share Document