scholarly journals Geometrical Platform of Big Database Computing for Modeling of Complex Physical Phenomena in Electric Current Treatment of Liquid Metals

Data ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 136 ◽  
Author(s):  
Yuriy Zaporozhets ◽  
Artem Ivanov ◽  
Yuriy Kondratenko

According to the principles of multiphysical, multiscale simulation of phenomena and processes which take place during the electric current treatment of liquid metals, the need to create an adjustable and concise geometrical platform for the big database computing of mathematical models and simulations is justified. In this article, a geometrical platform was developed based on approximation of boundary contours using arcs for application of the integral equations method and matrix transformations. This method achieves regular procedures using multidimensional scale matrices for big data transfer and computing. The efficiency of this method was verified by computer simulation and used for different model contours, which are parts of real contours. The obtained results showed that the numerical algorithm was highly accurate based on the presented geometrical platform of big database computing and that it possesses a potential ability for use in the organization of computational processes regarding the modeling and simulation of electromagnetic, thermal, hydrodynamic, wave, and mechanical fields (as a practical case in metal melts treated by electric current). The efficiency of this developed approach for big data matrices computing and equation system formation was displayed, as the number of numerical procedures, as well as the time taken to perform them, were much smaller when compared to the finite element method used for the same model contours.

2020 ◽  
Vol 22 (2) ◽  
pp. 130-144
Author(s):  
Aiqin Hou ◽  
Chase Qishi Wu ◽  
Liudong Zuo ◽  
Xiaoyang Zhang ◽  
Tao Wang ◽  
...  

2016 ◽  
Vol 78 (8-2) ◽  
Author(s):  
Norma Alias ◽  
Nadia Nofri Yeni Suhari ◽  
Hafizah Farhah Saipan Saipol ◽  
Abdullah Aysh Dahawi ◽  
Masyitah Mohd Saidi ◽  
...  

This paper proposed the several real life applications for big data analytic using parallel computing software. Some parallel computing software under consideration are Parallel Virtual Machine, MATLAB Distributed Computing Server and Compute Unified Device Architecture to simulate the big data problems. The parallel computing is able to overcome the poor performance at the runtime, speedup and efficiency of programming in sequential computing. The mathematical models for the big data analytic are based on partial differential equations and obtained the large sparse matrices from discretization and development of the linear equation system. Iterative numerical schemes are used to solve the problems. Thus, the process of computational problems are summarized in parallel algorithm. Therefore, the parallel algorithm development is based on domain decomposition of problems and the architecture of difference parallel computing software. The parallel performance evaluations for distributed and shared memory architecture are investigated in terms of speedup, efficiency, effectiveness and temporal performance.


2018 ◽  
Vol 8 (11) ◽  
pp. 2216
Author(s):  
Jiahui Jin ◽  
Qi An ◽  
Wei Zhou ◽  
Jiakai Tang ◽  
Runqun Xiong

Network bandwidth is a scarce resource in big data environments, so data locality is a fundamental problem for data-parallel frameworks such as Hadoop and Spark. This problem is exacerbated in multicore server-based clusters, where multiple tasks running on the same server compete for the server’s network bandwidth. Existing approaches solve this problem by scheduling computational tasks near the input data and considering the server’s free time, data placements, and data transfer costs. However, such approaches usually set identical values for data transfer costs, even though a multicore server’s data transfer cost increases with the number of data-remote tasks. Eventually, this hampers data-processing time, by minimizing it ineffectively. As a solution, we propose DynDL (Dynamic Data Locality), a novel data-locality-aware task-scheduling model that handles dynamic data transfer costs for multicore servers. DynDL offers greater flexibility than existing approaches by using a set of non-decreasing functions to evaluate dynamic data transfer costs. We also propose online and offline algorithms (based on DynDL) that minimize data-processing time and adaptively adjust data locality. Although DynDL is NP-complete (nondeterministic polynomial-complete), we prove that the offline algorithm runs in quadratic time and generates optimal results for DynDL’s specific uses. Using a series of simulations and real-world executions, we show that our algorithms are 30% better than algorithms that do not consider dynamic data transfer costs in terms of data-processing time. Moreover, they can adaptively adjust data localities based on the server’s free time, data placement, and network bandwidth, and schedule tens of thousands of tasks within subseconds or seconds.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Nurullaeli Nurullaeli

The aim of this study is create an analysis media for calculating the electric current in a closed circuit with one or more loops.  Gauss-Jordan, Gauss-Seidel, and Cramer methods were used in this study. This media is packaged into Graphic User Interface (GUI) with matlab language program assisting. In this study, Linear Equation System (SPL) was obtained from kirchhoff current law and kirchhoff voltage law concepts.  Gauss-Seidel method is not always convergent for each formed SPL, because it can only be applied when coefficient matrix A was diagonally dominant. The application of this analysis media made the calculation of closed circuit electric current with one or more loops became accurate and time saving.


2019 ◽  
Vol E102.D (8) ◽  
pp. 1478-1488
Author(s):  
Eun-Sung JUNG ◽  
Si LIU ◽  
Rajkumar KETTIMUTHU ◽  
Sungwook CHUNG

Sign in / Sign up

Export Citation Format

Share Document