scholarly journals Lung Transplantation: CT Assessment of Chronic Lung Allograft Dysfunction (CLAD)

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 817
Author(s):  
Anne-Laure Brun ◽  
Marie-Laure Chabi ◽  
Clément Picard ◽  
François Mellot ◽  
Philippe A. Grenier

Chronic lung allograft rejection remains one of the major causes of morbi-mortality after lung transplantation. The term Chronic Lung Allograft Dysfunction (CLAD) has been proposed to describe the different processes that lead to a significant and persistent deterioration in lung function without identifiable causes. The two main phenotypes of CLAD are Bronchiolitis Obliterans Syndrome (BOS) and Restrictive Allograft Syndrome (RAS), each of them characterized by particular functional and imaging features. These entities can be associated (mixed phenotype) or switched from one to the other. If CLAD remains a clinical diagnosis based on spirometry, computed tomography (CT) scan plays an important role in the diagnosis and follow-up of CLAD patients, to exclude identifiable causes of functional decline when CLAD is first suspected, to detect early abnormalities that can precede the diagnosis of CLAD (particularly RAS), to differentiate between the obstructive and restrictive phenotypes, and to detect exacerbations and evolution from one phenotype to the other. Recognition of early signs of rejection is crucial for better understanding of physiopathologic pathways and optimal management of patients.

2018 ◽  
Vol 39 (02) ◽  
pp. 155-171 ◽  
Author(s):  
Ariss DerHovanessian ◽  
W. Wallace ◽  
Joseph Lynch ◽  
John Belperio ◽  
S. Weigt

AbstractLung transplantation has become an established therapeutic option for a variety of end-stage lung diseases. Technical advances in graft procurement, implantation, perioperative care, immunosuppression, and posttransplant medical management have led to significant improvements in 1-year survival, but outcomes after the first year have improved minimally over the last two decades. The main limitation to better long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD manifestations, risk factors, and mechanisms is rapidly evolving. Recognition of different CLAD phenotypes (e.g., bronchiolitis obliterans syndrome and restrictive allograft syndrome) and the unique pathogenic mechanisms will be important for developing novel therapies. In addition to alloimmune-mediated rejection, we now recognize the importance of alloimmune-independent mechanisms of injury to the allograft. CLAD is the consequence of dysregulated repair of allograft injury. Unfortunately, currently available therapies for CLAD are usually not effective. However, the advances in knowledge, reviewed in this manuscript, should lead to novel strategies for CLAD prevention and treatment, as well as improvement in long-term outcomes after lung transplantation. We provide an overview of the evolving terminology related to CLAD, its varying clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential treatments.


2021 ◽  
Vol 12 ◽  
pp. 204062232199344
Author(s):  
Filippo Patrucco ◽  
Elias Allara ◽  
Massimo Boffini ◽  
Mauro Rinaldi ◽  
Cristina Costa ◽  
...  

Background: Chronic lung allograft dysfunction (CLAD), a complication affecting the survival of lung transplanted patients, includes two clinical phenotypes: bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Everolimus is used in CLAD because of its antiproliferative mechanism. In lung transplant patients treated with everolimus, the clinical course of renal and lung function has not yet been assessed systematically in CLAD, BOS and RAS patients for more than 6 months. Methods: We retrospectively evaluated the 12-month follow-up of renal and lung function of lung-transplanted patients switched to everolimus and evaluated the reduction in immunosuppressant dosage (ISD) and mortality. Subgroups were based on indication for everolimus treatment: CLAD and non-CLAD patients, BOS and RAS among CLAD patients. Results: We included 26 patients, 17 with CLAD (10 BOS, seven RAS). After 1 year from the everolimus switch, we observed renal function improvement (serum creatinine −17%, estimated glomerular filtration rate +24%) and stable pulmonary function [forced expiratory volume in the first second (FEV1) −0.5%, forced vital capacity (FVC) +0.05%]. RAS patients had progressive functional loss, whereas BOS patients had FEV1 improvement and FVC stability. All-cause mortality was higher in the CLAD versus non-CLAD group (41% versus 11%), without differences between BOS and RAS patients ( p > 0.05). All patients had significant and persistent ISD reduction. Conclusion: Lung transplant patients treated with everolimus had improvements in renal function and reduced ISD. We observed sustained improvements in lung function for CLAD related to BOS subgroup results, whereas RAS confirmed the 1-year worsening functional trend. Data seem to suggest one more piece of the puzzle in CLAD phenotyping.


2019 ◽  
Vol 54 (5) ◽  
pp. 1900847 ◽  
Author(s):  
Annelore Sacreas ◽  
Jean-Luc Taupin ◽  
Marie-Paule Emonds ◽  
Liesbeth Daniëls ◽  
Dirk E. Van Raemdonck ◽  
...  

IntroductionCirculating anti-human leukocyte antigen (HLA) serum donor-specific antibodies (sDSAs) increase the risk of chronic lung allograft dysfunction (CLAD) and mortality. Discrepancies between serological and pathological/clinical findings are common. Therefore, we aimed to assess the presence of tissue-bound graft DSAs (gDSAs) in CLAD explant tissue compared with sDSAs.MethodsTissue cores, obtained from explant lungs of unused donors (n=10) and patients with bronchiolitis obliterans syndrome (BOS; n=18) and restrictive allograft syndrome (RAS; n=18), were scanned with micro-computed tomography before elution of antibodies. Total IgG levels were measured via ELISA. Anti-HLA class I and II IgG gDSAs were identified using Luminex single antigen beads and compared with DSAs found in serum samples.ResultsOverall, mean fluorescence intensity was higher in RAS eluates compared with BOS and controls (p<0.0001). In BOS, two patients were sDSA+/gDSA+ and two patients were sDSA−/gDSA+. In RAS, four patients were sDSA+/gDSA+, one patient was sDSA+/gDSA− and five patients were sDSA−/gDSA+. Serum and graft results combined, DSAs were more prevalent in RAS compared with BOS (56% versus 22%; p=0.04). There was spatial variability in gDSA detection in one BOS patient and three RAS patients, who were all sDSA−. Total graft IgG levels were higher in RAS than BOS (p<0.0001) and in gDSA+versus gDSA− (p=0.0008), but not in sDSA+versus sDSA− (p=0.33). In RAS, total IgG levels correlated with fibrosis (r= −0.39; p=0.02).ConclusionsThis study underlines the potential of gDSA assessment as complementary information to sDSA findings. The relevance and applications of gDSAs need further investigation.


2021 ◽  
Vol 30 (160) ◽  
pp. 210050
Author(s):  
Saskia Bos ◽  
Laurens J. De Sadeleer ◽  
Arno Vanstapel ◽  
Hanne Beeckmans ◽  
Annelore Sacreas ◽  
...  

This review aims to provide an overview of pre-transplant antifibrotic therapy on peri-transplant outcomes and to address the possible role of antifibrotics in lung transplant recipients with chronic lung allograft dysfunction.Lung transplantation is an established treatment modality for patients with various end-stage lung diseases, of which idiopathic pulmonary fibrosis and other progressive fibrosing interstitial lung diseases are growing indications. Theoretically, widespread use of antifibrotics prior to lung transplantation may increase the risk of bronchial anastomotic complications and impaired wound healing.Long-term graft and patient survival are still hampered by development of chronic lung allograft dysfunction, on which antifibrotics may have a beneficial impact.Antifibrotics until the moment of lung transplantation proved to be safe, without increasing peri-transplant complications. Currently, best practice is to continue antifibrotics until time of transplantation. In a large multicentre randomised trial, pirfenidone did not appear to have a beneficial effect on lung function decline in established bronchiolitis obliterans syndrome. The results of antifibrotic therapy in restrictive allograft syndrome are eagerly awaited, but nonrandomised data from small case reports/series are promising.


2021 ◽  
Vol 10 (5) ◽  
pp. 1078
Author(s):  
Jesper Rømhild Davidsen ◽  
Christian B. Laursen ◽  
Mikkel Højlund ◽  
Thomas Kromann Lund ◽  
Klaus Nielsen Jeschke ◽  
...  

Background: Bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS) are two distinct phenotypes of chronic lung allograft dysfunction (CLAD) in lung transplant (LTx) recipients. Contrary to BOS, RAS can radiologically present with a pleuroparenchymal fibroelastosis (PPFE) pattern. This study investigates lung ultrasound (LUS) to identify potential surrogate markers of PPFE in order to distinguish CLAD phenotype RAS from BOS. Methods: A prospective cohort study performed at a National Lung Transplantation Center during June 2016 to December 2017. Patients were examined with LUS and high-resolution computed tomography of the thorax (HRCT). Results: Twenty-five CLAD patients (72% males, median age of 54 years) were included, corresponding to 19/6 BOS/RAS patients. LUS-identified pleural thickening was more pronounced in RAS vs. BOS patients (5.6 vs. 2.9 mm) compatible with PPFE on HRCT. LUS-identified pleural thickening as an indicator of PPFE in RAS patients’ upper lobes showed a sensitivity of 100% (95% CI; 54–100%), specificity of 100% (95% CI; 82–100%), PPV of 100% (95% CI; 54–100%), and NPV of 100% (95% CI; 82–100%). Conclusion: Apical pleural thickening detected by LUS and compatible with PPFE on HRCT separates RAS from BOS in patients with CLAD. We propose LUS as a supplementary tool for initial CLAD phenotyping.


Sign in / Sign up

Export Citation Format

Share Document