scholarly journals Next-Generation Sequencing Analysis of Root Canal Microbiota Associated with a Severe Endodontic-Periodontal Lesion

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1461
Author(s):  
Alessio Buonavoglia ◽  
Gianvito Lanave ◽  
Michele Camero ◽  
Marialaura Corrente ◽  
Antonio Parisi ◽  
...  

A patient with an unusual endo-periodontal lesion, without coronal decay or damage, likely caused by a deep periodontal lesion with subsequent endodontic bacterial migration, required medical care. Next-generation sequencing (NGS) was used to assess the endodontic microbiota in vestibular and palatal canals after tooth extraction, evidencing a predominant population (Fusobacterium nucleatum) in one endodontic canal, and a mixed bacterial population with six major populations almost equally distributed in the other endodontic canal (F. nucleatum, Porphyromonas gingivalis, P. endodontis, Parvimonas, Peptostreptococcus stomatis, Prevotella multiformis). These data could suggest different, separated ecologic niches in the same endodontic system, with potentially different pathogenicity levels, clinical manifestations and prognoses for every single canal of the same tooth.

2020 ◽  
Author(s):  
Yuling An ◽  
Mingming Fan ◽  
Ziyu Li ◽  
You Peng ◽  
Xiaomeng Yi ◽  
...  

Abstract We shared our successful treatment experience of a severe tetanus patient in China. A 50 year old male patient was admitted to our hospital 10 days after the right arm injury due to pain and masticatory weakness. The pathogen of wound secretion was confirmed to be clostridium tetanus by next-generation sequencing (NGS).The patient's condition rapidly progressed to a severe state with autonomic instability. After debridement and comprehensive treatment in ICU, including deep analgesia and sedation with dexmedetomidine, ventilator support and anti-infection treatment, the patient finally recovered and discharged. This case suggested that early diagnosis and reasonable intervention of severe tetanus could reduce mortality.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 50 ◽  
Author(s):  
Michael T. Wolfinger ◽  
Jörg Fallmann ◽  
Florian Eggenhofer ◽  
Fabian Amman

Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 50 ◽  
Author(s):  
Michael T. Wolfinger ◽  
Jörg Fallmann ◽  
Florian Eggenhofer ◽  
Fabian Amman

Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools.


2020 ◽  
Vol 9 (1) ◽  
pp. 132 ◽  
Author(s):  
Rute Pereira ◽  
Jorge Oliveira ◽  
Mário Sousa

Clinical genetics has an important role in the healthcare system to provide a definitive diagnosis for many rare syndromes. It also can have an influence over genetics prevention, disease prognosis and assisting the selection of the best options of care/treatment for patients. Next-generation sequencing (NGS) has transformed clinical genetics making possible to analyze hundreds of genes at an unprecedented speed and at a lower price when comparing to conventional Sanger sequencing. Despite the growing literature concerning NGS in a clinical setting, this review aims to fill the gap that exists among (bio)informaticians, molecular geneticists and clinicians, by presenting a general overview of the NGS technology and workflow. First, we will review the current NGS platforms, focusing on the two main platforms Illumina and Ion Torrent, and discussing the major strong points and weaknesses intrinsic to each platform. Next, the NGS analytical bioinformatic pipelines are dissected, giving some emphasis to the algorithms commonly used to generate process data and to analyze sequence variants. Finally, the main challenges around NGS bioinformatics are placed in perspective for future developments. Even with the huge achievements made in NGS technology and bioinformatics, further improvements in bioinformatic algorithms are still required to deal with complex and genetically heterogeneous disorders.


2014 ◽  
Author(s):  
Michael T. Wolfinger ◽  
Jörg Fallmann ◽  
Florian Eggenhofer ◽  
Fabian Amman

Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools.


Sign in / Sign up

Export Citation Format

Share Document