scholarly journals “The Heisenberg Method”: Geometry, Algebra, and Probability in Quantum Theory

Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 656 ◽  
Author(s):  
Arkady Plotnitsky

The article reconsiders quantum theory in terms of the following principle, which can be symbolically represented as QUANTUMNESS → PROBABILITY → ALGEBRA and will be referred to as the QPA principle. The principle states that the quantumness of physical phenomena, that is, the specific character of physical phenomena known as quantum, implies that our predictions concerning them are irreducibly probabilistic, even in dealing with quantum phenomena resulting from the elementary individual quantum behavior (such as that of elementary particles), which in turn implies that our theories concerning these phenomena are fundamentally algebraic, in contrast to more geometrical classical or relativistic theories, although these theories, too, have an algebraic component to them. It follows that one needs to find an algebraic scheme able make these predictions in a given quantum regime. Heisenberg was first to accomplish this in the case of quantum mechanics, as matrix mechanics, whose matrix character testified to his algebraic method, as Einstein characterized it. The article explores the implications of the Heisenberg method and of the QPA principle for quantum theory, and for the relationships between mathematics and physics there, from a nonrealist or, in terms of this article, “reality-without-realism” or RWR perspective, defining the RWR principle, thus joined to the QPA principle.

The steady development of the quantum theory that has taken place during the present century was made possible only by continual reference to the Correspondence Principle of Bohr, according to which, classical theory can give valuable information about quantum phenomena in spite of the essential differences in the fundamental ideas of the two theories. A masterful advance was made by Heisenberg in 1925, who showed how equations of classical physics could be taken over in a formal way and made to apply to quantities of importance in quantum theory, thereby establishing the Correspondence Principle on a quantitative basis and laying the foundations of the new Quantum Mechanics. Heisenberg’s scheme was found to fit wonderfully well with the Hamiltonian theory of classical mechanics and enabled one to apply to quantum theory all the information that classical theory supplies, in so far as this information is consistent with the Hamiltonian form. Thus one was able to build up a satisfactory quantum mechanics for dealing with any dynamical system composed of interacting particles, provided the interaction could be expressed by means of an energy term to be added to the Hamiltonian function. This does not exhaust the sphere of usefulness of the classical theory. Classical electrodynamics, in its accurate (restricted) relativistic form, teaches us that the idea of an interaction energy between particles is only an approxi­mation and should be replaced by the idea of each particle emitting waves which travel outward with a finite velocity and influence the other particles in passing over them. We must find a way of taking over this new information into the quantum theory and must set up a relativistic quantum mechanics, before we can dispense with the Correspondence Principle.


Author(s):  
Angelo Bassi

Quantum Mechanics is one of the most successful theories of nature. It accounts for all known properties of matter and light, and it does so with an unprecedented level of accuracy. On top of this, it generated many new technologies that now are part of daily life. In many ways, it can be said that we live in a quantum world. Yet, quantum theory is subject to an intense debate about its meaning as a theory of nature, which started from the very beginning and has never ended. The essence was captured by Schrödinger with the cat paradox: why do cats behave classically instead of being quantum like the one imagined by Schrödinger? Answering this question digs deep into the foundation of quantum mechanics. A possible answer is Dynamical Collapse Theories. The fundamental assumption is that the Schrödinger equation, which is supposed to govern all quantum phenomena (at the non-relativistic level) is only approximately correct. It is an approximation of a nonlinear and stochastic dynamics, according to which the wave functions of microscopic objects can be in a superposition of different states because the nonlinear effects are negligible, while those of macroscopic objects are always very well localized in space because the nonlinear effects dominate for increasingly massive systems. Then, microscopic systems behave quantum mechanically, while macroscopic ones such as Schrödinger’s cat behave classically simply because the (newly postulated) laws of nature say so. By changing the dynamics, collapse theories make predictions that are different from quantum-mechanical predictions. Then it becomes interesting to test the various collapse models that have been proposed. Experimental effort is increasing worldwide, so far limiting values of the theory’s parameters quantifying the collapse, since no collapse signal was detected, but possibly in the future finding such a signal and opening up a window beyond quantum theory.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 747
Author(s):  
Arkady Plotnitsky

Following the view of several leading quantum-information theorists, this paper argues that quantum phenomena, including those exhibiting quantum correlations (one of their most enigmatic features), and quantum mechanics may be best understood in quantum-informational terms. It also argues that this understanding is implicit already in the work of some among the founding figures of quantum mechanics, in particular W. Heisenberg and N. Bohr, half a century before quantum information theory emerged and confirmed, and gave a deeper meaning to, to their insights. These insights, I further argue, still help this understanding, which is the main reason for considering them here. My argument is grounded in a particular interpretation of quantum phenomena and quantum mechanics, in part arising from these insights as well. This interpretation is based on the concept of reality without realism, RWR (which places the reality considered beyond representation or even conception), introduced by this author previously, in turn, following Heisenberg and Bohr, and in response to quantum information theory.


2021 ◽  
Author(s):  
Alexey Kryukov

Abstract Quantum mechanics is the foundation of modern physics that is thought to be applicable to all physical phenomena, at least in principle. However, when applied to macroscopic bodies, the theory seems to be inconsistent. Wigner's friend and related thought experiments demonstrate that accounts by different observers described by the rules of quantum mechanics may be contradictory. Although still highly debated, such experiments seem to demonstrate an incompatibility of quantum mechanics with the usual rules of logic. Alternatively, one of the hidden assumptions in the thought experiments must be wrong. For instance, the argument is invalidated if macroscopic observers cannot be considered as physical systems described by the rules of quantum theory. Here we prove that there is a way to apply the rules of quantum mechanics to macroscopic observers while avoiding contradictory accounts of measurement by the observers. The key to this is the random noise that is ever present in nature and that represents the uncontrollable part of interaction between measured system and the surroundings in classical and quantum physics. By exploring the effect of the noise on microscopic and macroscopic bodies, we demonstrate that accounts of Wigner, the friend and other agents all become consistent. Our result suggests that the existing attempts to modify the Schrodinger equation to account for measurement results may be misguided. More broadly, the proposed mechanism for modeling measurements underlies the phenomenon of decoherence and is shown to be sufficient to explain the transition to Newtonian physics in quantum theory.


Author(s):  
Kate Atkinson

Developed in the early 20th century, quantum theory is a branch of theoretical physics that concerns the unpredictable quality of particles at the quantum, or subatomic, level. In 1900 Max Planck (1859–1947) inaugurated inquiry into quantum mechanics when he challenged the classical theory that light behaves as a wave, proposing instead that it is emitted in quanta, or discrete units. By 1927 this groundbreaking theory had been more clearly articulated by Niels Bohr’s (1885–1962) "Principle of Complementarity" and Werner Heisenberg’s (1901–1976) "Uncertainty Principle." Heisenberg proposed that all physical phenomena that can be observed are subject to a degree of indeterminacy and suggested that the act of scientific observation of a quantum system would change that system. These new proposals of quantum theory unseated the authority of classical deterministic physics and challenged the perceived objectivity of science. Attracted by quantum theory’s revolutionary ideas, various modernist critics adapted its principles of uncertainty and indeterminacy to studies in the humanities. For instance, I. A. Richards (1893–1970) and William Empson (1906–1984) employed Bohr’s concepts in their work on irony, ambiguity, and paradox. Heisenberg suggested, however, that both modern artistic innovations and quantum theory were the products of "profound transformations in the fundamentals of our existence" (1958: 95).


Author(s):  
P. A. M. Dirac ◽  
R. Peierls ◽  
M. H. L. Pryce

In a recent paper, Eddington raises an objection against the customary use of the Lorentz transformation in quantum mechanics, as for instance when applied to the theory of the hydrogen atom or the behaviour of a degenerate gas. This objection seems to us to be mainly based on a misunderstanding, and our purpose here is to show that the practice of theoretical physicists on this point is quite consistent. The issue is a little confused because Eddington's system of mechanics is in many important respects completely different from quantum mechanics, and although Eddington's objection is to an alleged illogical practice in quantum mechanics he occasionally makes use of concepts which have no place there. Such arguments will not have any bearing on the question whether or not the practice in quantum mechanics is logically consistent—although they may have bearing on which of the two systems describes physical phenomena better.


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


Sign in / Sign up

Export Citation Format

Share Document