scholarly journals Using Multiscale Entropy to Assess the Efficacy of Local Cooling on Reactive Hyperemia in People with a Spinal Cord Injury

Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 90 ◽  
Author(s):  
Fuyuan Liao ◽  
Tim Yang ◽  
Fu-Lien Wu ◽  
Chunmei Cao ◽  
Ayman Mohamed ◽  
...  

Pressure ulcers are one of the most common complications of a spinal cord injury (SCI). Prolonged unrelieved pressure is thought to be the primary causative factor resulting in tissue ischemia and eventually pressure ulcers. Previous studies suggested that local cooling reduces skin ischemia of the compressed soft tissues based on smaller hyperemic responses. However, the effect of local cooling on nonlinear properties of skin blood flow (SBF) during hyperemia is unknown. In this study, 10 wheelchair users with SCI and 10 able-bodied (AB) controls underwent three experimental protocols, each of which included a 10-min period as baseline, a 20-min intervention period, and a 20-min period for recovering SBF. SBF was measured using a laser Doppler flowmetry. During the intervention period, a pressure of 60 mmHg was applied to the sacral skin, while three skin temperature settings were tested, including no temperature change, a decrease by 10 °C, and an increase by 10 °C, respectively. A multiscale entropy (MSE) method was employed to quantify the degree of regularity of blood flow oscillations (BFO) associated with the SBF control mechanisms during baseline and reactive hyperemia. The results showed that under pressure with cooling, skin BFO both in people with SCI and AB controls were more regular at multiple time scales during hyperemia compared to baseline, whereas under pressure with no temperature change and particularly pressure with heating, BFO were more irregular during hyperemia compared to baseline. Moreover, the results of surrogate tests indicated that changes in the degree of regularity of BFO from baseline to hyperemia were only partially attributed to changes in relative amplitudes of endothelial, neurogenic, and myogenic components of BFO. These findings support the use of MSE to assess the efficacy of local cooling on reactive hyperemia and assess the degree of skin ischemia in people with SCI.

Author(s):  
Robert R. Hansebout ◽  
R. Neil Lamont ◽  
M. Venkatraya Kamath

ABSTRACT:The internal spinal cord blood flow was measured in dogs at the site of local cooling using hydrogen polarography. Blood flow decreased to 50% of the normothermic values during cooling of the cord to a central temperature of 16 degrees Celsius. Upon cessation of cooling internal blood flow rapidly returned to normal values. Implications of this finding for the treatment of spinal cord injury are discussed.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1321
Author(s):  
Joo-Hyun Kee ◽  
Jun-Hyeong Han ◽  
Chang-Won Moon ◽  
Kang Hee Cho

Patients with a spinal cord injury (SCI) frequently experience sudden falls in blood pressure during postural change. Few studies have investigated whether the measurement of blood flow velocity within vessels can reflect brain perfusion during postural change. By performing carotid duplex ultrasonography (CDU), we investigated changes in cerebral blood flow (CBF) during postural changes in patients with a cervical SCI, determined the correlation of CBF change with presyncopal symptoms, and investigated factors affecting cerebral autoregulation. We reviewed the medical records of 100 patients with a cervical SCI who underwent CDU. The differences between the systolic blood pressure, diastolic blood pressure, and CBF volume in the supine posture and after 5 min at 50° tilt were evaluated. Presyncopal symptoms occurred when the blood flow volume of the internal carotid artery decreased by ≥21% after tilt. In the group that had orthostatic hypotension and severe CBF decrease during tilt, the body mass index and physical and functional scores were lower than in other groups, and the proportion of patients with a severe SCI was high. The higher the SCI severity and the lower the functional score, the higher the possibility of cerebral autoregulation failure. CBF should be assessed by conducting CDU in patients with a high-level SCI.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


Sign in / Sign up

Export Citation Format

Share Document