scholarly journals Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 247 ◽  
Author(s):  
Mohammad Shekaramiz ◽  
Todd Moon ◽  
Jacob Gunther

We consider the sparse recovery problem of signals with an unknown clustering pattern in the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique. For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern, or clumpy behavior, along each column, as well as joint sparsity across the columns. In this paper, we propose a new sparse Bayesian learning (SBL) method that incorporates a total variation-like prior as a measure of the overall clustering pattern in the solution. We further incorporate a parameter in this prior to account for the emphasis on the amount of clumpiness in the supports of the solution to improve the recovery performance of sparse signals with an unknown clustering pattern. This parameter does not exist in the other existing algorithms and is learned via our hierarchical SBL algorithm. While the proposed algorithm is constructed for the MMVs, it can also be applied to the single measurement vector (SMV) problems. Simulation results show the effectiveness of our algorithm compared to other algorithms for both SMV and MMVs.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hanwei Liu ◽  
Yongshun Zhang ◽  
Yiduo Guo ◽  
Qiang Wang ◽  
Yifeng Wu

In a heterogeneous environment, to efficiently suppress clutter with only one snapshot, a novel STAP algorithm for multiple-input multiple-output (MIMO) radar based on sparse representation, referred to as MIMOSR-STAP in this paper, is presented. By exploiting the waveform diversity of MIMO radar, each snapshot at the tested range cell can be transformed into multisnapshots for the phased array radar, which can estimate the high-resolution space-time spectrum by using multiple measurement vectors (MMV) technique. The proposed approach is effective in estimating the spectrum by utilizing Temporally Correlated Multiple Sparse Bayesian Learning (TMSBL). In the sequel, the clutter covariance matrix (CCM) and the corresponding adaptive weight vector can be efficiently obtained. MIMOSR-STAP enjoys high accuracy and robustness so that it can achieve better performance of output signal-to-clutter-plus-noise ratio (SCNR) and minimum detectable velocity (MDV) than the single measurement vector sparse representation methods in the literature. Thus, MIMOSR-STAP can deal with badly inhomogeneous clutter scenario more effectively, especially suitable for insufficient independent and identically distributed (IID) samples environment.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. O91-O104 ◽  
Author(s):  
Georgios Pilikos ◽  
A. C. Faul

Extracting the maximum possible information from the available measurements is a challenging task but is required when sensing seismic signals in inaccessible locations. Compressive sensing (CS) is a framework that allows reconstruction of sparse signals from fewer measurements than conventional sampling rates. In seismic CS, the use of sparse transforms has some success; however, defining fixed basis functions is not trivial given the plethora of possibilities. Furthermore, the assumption that every instance of a seismic signal is sparse in any acquisition domain under the same transformation is limiting. We use beta process factor analysis (BPFA) to learn sparse transforms for seismic signals in the time slice and shot record domains from available data, and we use them as dictionaries for CS and denoising. Algorithms that use predefined basis functions are compared against BPFA, with BPFA obtaining state-of-the-art reconstructions, illustrating the importance of decomposing seismic signals into learned features.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6461
Author(s):  
Olufemi Adeluyi ◽  
Miguel A. Risco-Castillo ◽  
María Liz Crespo ◽  
Andres Cicuttin ◽  
Jeong-A Lee

Personalized health monitoring of neural signals usually results in a very large dataset, the processing and transmission of which require considerable energy, storage, and processing time. We present bioinspired electroceptive compressive sensing (BeCoS) as an approach for minimizing these penalties. It is a lightweight and reliable approach for the compression and transmission of neural signals inspired by active electroceptive sensing used by weakly electric fish. It uses a signature signal and a sensed pseudo-sparse differential signal to transmit and reconstruct the signals remotely. We have used EEG datasets to compare BeCoS with the block sparse Bayesian learning-bound optimization (BSBL-BO) technique—A popular compressive sensing technique used for low-energy wireless telemonitoring of EEG signals. We achieved average coherence, latency, compression ratio, and estimated per-epoch power values that were 35.38%, 62.85%, 53.26%, and 13 mW better than BSBL-BO, respectively, while structural similarity was only 6.295% worse. However, the original and reconstructed signals remain visually similar. BeCoS senses the signals as a derivative of a predefined signature signal resulting in a pseudo-sparse signal that significantly improves the efficiency of the monitoring process. The results show that BeCoS is a promising approach for the health monitoring of neural signals.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Rui Li ◽  
Ying Luo ◽  
Qun Zhang ◽  
Yijun Chen ◽  
Jia Liang

Bistatic radar imaging can overcome limitations of monostatic radar imaging and obtain abundant target feature information; thus, it is followed with interest. Different from bistatic inverse synthetic aperture radar (Bi-ISAR) imaging, bistatic radar coincidence imaging (Bi-RCI) provides a new tack on the bistatic radar imaging technique. In this paper, a Bi-RCI based on multiple measurement vectors (MMV) for rotating cone-shaped targets is proposed to realize Bi-RCI coherent processing and improve imaging performance. Based on the mixed mode signals, a MMV parametric model is established and measurement number coarse selection is proposed. Finally, a modified sparse Bayesian learning (MSBL) algorithm is introduced to reconstruct the target image. Simulation results demonstrate the validity and the superiority of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document