scholarly journals Probabilistic Strategic Conflict-Management for 4D Trajectories in Free-Route Airspace

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 159
Author(s):  
Javier Alberto Pérez-Castán ◽  
Álvaro Rodríguez-Sanz ◽  
Luis Pérez Sanz ◽  
Rosa M. Arnaldo Valdés ◽  
V. Fernando Gómez Comendador ◽  
...  

The expected growth of air traffic in the following decades demands the implementation of new operational concepts to avoid current limitations of the air traffic management system. This paper focuses on the strategic conflict management for four-dimensional trajectories (4DT) in free-route airspace. 4DT has been proposed as the future operational concept to manage air traffic. Thus, aircraft must fulfil temporary restrictions at specific waypoints in the airspace based on time windows. Based on the temporary restrictions, a strategic conflict management method is proposed to calculate the conflict probability of an aircraft pair (that intersects in the air) and to calculate temporary-blocking windows that quantify the time span at which an aircraft cannot depart because one conflict could occur. This methodology was applied in a case-study for an aircraft pair, including the uncertainty associated with 4DT. Moreover, a sensitivity analysis was performed to characterise the impact of wind conditions and speed control on the temporary-blocking windows. The results concluded that it is feasible to propose 4DT strategic de-confliction based on temporary-blocking windows. Although, uncertainty variables such as wind and speed control impact on the conflict probability and the size of the temporary-blocking windows.

2019 ◽  
Vol 91 (5) ◽  
pp. 761-782 ◽  
Author(s):  
Álvaro Rodríguez-Sanz ◽  
Fernando Gómez Comendador ◽  
Rosa M. Arnaldo Valdés ◽  
Javier A. Pérez-Castán ◽  
Pablo González García ◽  
...  

PurposeThe use of the 4D trajectory operational concept in the future air traffic management (ATM) system will require the aircraft to meet very accurately an arrival time over a designated checkpoint. To do this, time intervals known as time windows (TW) are defined. The purpose of this paper is to develop a methodology to characterise these TWs and to manage the uncertainty associated with the evolution of 4D trajectories.Design/methodology/approach4D trajectories are modelled using a point mass model and EUROCONTROL’s BADA methodology. The authors stochastically evaluate the variability of the parameters that influence 4D trajectories using Monte Carlo simulation. This enables the authors to delimit TWs for several checkpoints. Finally, the authors set out a causal model, based on a Bayesian network approach, to evaluate the impact of variations in fundamental parameters at the chosen checkpoints.FindingsThe initial results show that the proposed TW model limits the deviation in time to less than 27 s at the checkpoints of an en-route segment (300 NM).Practical implicationsThe objective of new trajectory-based operations is to efficiently and strategically manage the expected increase in air traffic volumes and to apply tactical interventions as a last resort only. We need new tools to support 4D trajectory management functions such as strategic and collaborative planning. The authors propose a novel approach for to ensure aircraft punctuality.Originality/valueThe main contribution of the paper is the development of a model to deal with uncertainty and to increase predictability in 4D trajectories, which are key elements of the future airspace operational environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Sergio Ruiz ◽  
Javier Lopez Leones ◽  
Andrea Ranieri

The introduction of new Air Traffic Management (ATM) concepts such as Trajectory Based Operations (TBO) may produce a significant impact in all performance areas, that is, safety, capacity, flight efficiency, and others. The performance framework in use today has been tailored to the operational needs of the current ATM system and must evolve to fulfill the new needs and challenges brought by the TBO content. This paper presents a novel performance assessment framework and methodology adapted to the TBO concept. This framework can assess the key performance areas (KPAs) of safety, capacity, and flight efficiency; equity and fairness are also considered in this research, in line with recent ATM trends. A case study is presented to show the applicability of the framework and to illustrate how some of the complex interdependencies among KPAs can be captured with the proposed approach. This case study explores the TBO concept of “strategic 4D trajectory deconfliction,” where the early separation tasks of 4D trajectories at multisector level are assessed. The framework presented in this paper could potentially support the target-setting and performance requirements identification that should be fulfilled in the future ATM system to ensure determined levels of performance.


2020 ◽  
Vol 92 (9) ◽  
pp. 1357-1375
Author(s):  
Álvaro Rodríguez-Sanz ◽  
Cecilia Claramunt Puchol ◽  
Javier A. Pérez-Castán ◽  
Fernando Gómez Comendador ◽  
Rosa M. Arnaldo Valdés

Purpose The current air traffic management (ATM) operational approach is changing; “time” is now integrated as an additional fourth dimension on trajectories. This notion will impose on aircraft the compliance of accurate arrival times over designated checkpoints (CPs), called time windows (TWs). This paper aims to clarify the basic requirements and foundations for the practical implementation of this functional framework. Design/methodology/approach This paper reviews the operational deployment of 4D trajectories, by defining its relationship with other concepts and systems of the future ATM and communications, navigation and surveillance (CNS) context. This allows to establish the main tools that should be considered to ease the application of the 4D-trajectories approach. This paper appraises how 4D trajectories must be managed and planned (negotiation, synchronization, modification and verification processes). Then, based on the evolution of a simulated 4D trajectory, the necessary corrective measures by evaluating the degradation tolerances and conditions are described and introduced. Findings The proposed TWs model can control the time tolerance within less than 100 s along the passing CPs of a generic trajectory, which is in line with the expected future ATM time-performance requirements. Originality/value The main contribution of this work is the provision of a holistic vision of the systems and concepts that will be necessary to implement the new 4D-trajectory concept efficiently, thus enhancing performance. It also proposes tolerance windows for trajectory degradation, to understand both when an update is necessary and what are the conditions required for pilots and air traffic controllers to provide this update.


2019 ◽  
Vol 304 ◽  
pp. 05001
Author(s):  
Álvaro Rodríguez–Sanz ◽  
Cecilia Claramunt Puchol ◽  
Fernando Gómez Comendador ◽  
Javier Pérez-Castán ◽  
Rosa Arnaldo Valdés ◽  
...  

The current Air Traffic Management (ATM) functional approach is changing: ‘time’ is now integrated as an additional fourth dimension on trajectories. This notion will impose on aircraft the compliance of accurately arrival times over designated checkpoints, called Time Windows (TWs). In this context, we review the operational concept of 4D-trajectories, by initially developing an analysis of basic requirements for their implementation in the Communications, Navigation and Surveillance (CNS) systems and then by investigating their management in the future ATM context. We focus on defining the relationships between 4D-trajectories and other concepts and systems of the future ATM framework, and the needs that it will require for its application, detailing the main tools, programs and ATM/CNS systems that must be deployed. We appraise how 4D-trajectories must be managed and planned (negotiation, synchronization, modification and verification processes). Then, based on the degradation of a 4D-trajectory, we define and introduce the necessary corrective measures by evaluating the degradation tolerances and conditions.


2013 ◽  
Author(s):  
Angela Schmitt ◽  
Ruzica Vujasinovic ◽  
Christiane Edinger ◽  
Julia Zillies ◽  
Vilmar Mollwitz

Author(s):  
A. V. Strukova

The article considers the new automated air traffic management system «Synthesis AR4», as well as a system description for ensuring the implementation of a modernized airspace structure, navigation and surveillance that provides technical capabilities. A number of functional capabilities and advantages of the airspace security system are presented.


2021 ◽  
Author(s):  
Robert D. Windhorst ◽  
Todd A. Lauderdale ◽  
Alexander V. Sadovsky ◽  
James Phillips ◽  
Yung-Cheng Chu

Sign in / Sign up

Export Citation Format

Share Document