scholarly journals Landauer’s Principle in a Quantum Szilard Engine without Maxwell’s Demon

Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 294
Author(s):  
Alhun Aydin ◽  
Altug Sisman ◽  
Ronnie Kosloff

Quantum Szilard engine constitutes an adequate interplay of thermodynamics, information theory and quantum mechanics. Szilard engines are in general operated by a Maxwell’s Demon where Landauer’s principle resolves the apparent paradoxes. Here we propose a Szilard engine setup without featuring an explicit Maxwell’s demon. In a demonless Szilard engine, the acquisition of which-side information is not required, but the erasure and related heat dissipation still take place implicitly. We explore a quantum Szilard engine considering quantum size effects. We see that insertion of the partition does not localize the particle to one side, instead creating a superposition state of the particle being in both sides. To be able to extract work from the system, particle has to be localized at one side. The localization occurs as a result of quantum measurement on the particle, which shows the importance of the measurement process regardless of whether one uses the acquired information or not. In accordance with Landauer’s principle, localization by quantum measurement corresponds to a logically irreversible operation and for this reason it must be accompanied by the corresponding heat dissipation. This shows the validity of Landauer’s principle even in quantum Szilard engines without Maxwell’s demon.

1991 ◽  
Vol 16 (6) ◽  
pp. 623-638 ◽  
Author(s):  
P.A. Badoz ◽  
F. Arnaud d'Avitaya ◽  
E. Rosencher

1983 ◽  
Vol 44 (C10) ◽  
pp. C10-375-C10-378 ◽  
Author(s):  
P. Ahlqvist ◽  
P. de Andrés ◽  
R. Monreal ◽  
F. Flores

1968 ◽  
Vol 96 (9) ◽  
pp. 61-86 ◽  
Author(s):  
B.A. Tavger ◽  
V.Ya. Demikhovskii

1997 ◽  
Vol 229 (6) ◽  
pp. 401-405 ◽  
Author(s):  
A. Crépieux ◽  
C. Lacroix ◽  
N. Ryzhanova ◽  
A. Vedyayev

2006 ◽  
Vol 100 (11) ◽  
pp. 114905 ◽  
Author(s):  
M. Cattani ◽  
M. C. Salvadori ◽  
A. R. Vaz ◽  
F. S. Teixeira ◽  
I. G. Brown

1993 ◽  
Vol 97 (37) ◽  
pp. 9493-9498 ◽  
Author(s):  
Ladislav Kavan ◽  
Tiziana Stoto ◽  
Michael Graetzel ◽  
Donald Fitzmaurice ◽  
Valery Shklover

1992 ◽  
Vol 283 ◽  
Author(s):  
R. Tsu ◽  
L. Ioriatti ◽  
J. F. Harvey ◽  
H. Shen ◽  
R. A. Lux

ABSTRACTThe reduction of the dielectric constant due to quantum confinement is studied both experimentally and theoretically. Angle resolved ellipsometry measurements with Ar- and He-Ne-lasers give values for the index of refraction far below what can be accounted for from porosity alone. A modified Penn model to include quantum size effects has been used to calculate the reduction in the static dielectric constant (ε) with extreme confinement. Since the binding energy of shallow impurities depends inversely on ε2, the drastic decrease in the carrier concentration as a result of the decrease in ε leads to a self-limiting process for the electrochemical etching of porous silicon.


2006 ◽  
Vol 89 (18) ◽  
pp. 183109 ◽  
Author(s):  
Tie-Zhu Han ◽  
Guo-Cai Dong ◽  
Quan-Tong Shen ◽  
Yan-Feng Zhang ◽  
Jin-Feng Jia ◽  
...  

2005 ◽  
Vol 1 (1) ◽  
pp. 17-20
Author(s):  
Ting-yun Wang ◽  
Ke-xin Wang ◽  
Jun Lu

Sign in / Sign up

Export Citation Format

Share Document