scholarly journals A Novel Method of Vein Detection with the Use of Digital Image Correlation

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 401
Author(s):  
Zbigniew Lutowski ◽  
Sławomir Bujnowski ◽  
Beata Marciniak ◽  
Sylwester Kloska ◽  
Anna Marciniak ◽  
...  

Digital image correlation may be useful in many different fields of science, one of which is medicine. In this paper, the authors present the results of research aimed at detecting skin micro-shifts caused by pulsation of the veins. A novel technique using digital image correlation (DIC) and filtering the resulting shifts map to detect pulsating veins was proposed. After applying the proposed method, the veins in the forearm were visualized. The proposed technique may be used in the diagnosis of venous stenosis and may also contribute to reducing the number of adverse events during blood collection. The great advantage of the proposed method is the lack of the need to have specialized equipment, only a typical mobile phone camera is needed to perform the test.

Geomatics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 17-35
Author(s):  
Francesco Mugnai ◽  
Antonio Cosentino ◽  
Paolo Mazzanti ◽  
Grazia Tucci

The study presents results from applying the Real Aperture Radar interferometry technique and Digital Image Correlation through a mobile phone camera to identify static and dynamic deformations of a gantry during surveying operations on the Michelangelo’s David at the Galleria dell’Accademia di Firenze Museum in Florence. The statue has considerable size and reaches an elevation of more than seven meters on its pedestal. An ad-hoc gantry was designed and deployed, given the cramped operating area around the statue. The scanner had a stability control system that forbid surveying in instrument movements. However, considering the unicity of the survey and its rare occurrence, the previous survey had been carried out in the year 2000; verifying stability and recording deformations is a crucial task, and necessary for validation. As the gantry does not have an on-board stability sensor, and considering the hi-survey accuracy requested, a redundant, contactless, remote monitoring system of the gantry and the statue stability was chosen to guarantee the maximum freedom of movement around the David to avoid any interference during scanning operations. Thanks to the TInRAR technique, the gantry and the statue were monitored with an accuracy of 0.01 mm. At the same time, a Digital Image Correlation analysis was performed on the gantry, which can be considered a Multi-Degree-Of-Freedom (MDOF) system, to accurately calculate the vibration frequency and amplitude. A comparison between TInRAR and DIC results reported substantial accordance in detecting gantry’s oscillating frequencies; a predominant oscillation frequency of 1.33 Hz was identified on the gantry structure by TinSAR and DIC analysis.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5058
Author(s):  
Long Tian ◽  
Jianhui Zhao ◽  
Bing Pan ◽  
Zhaoyang Wang

Video deflectometer based on using off-axis digital image correlation (DIC) has emerged as a robust non-contact optical tool for deflection measurements of bridges. In practice, a video deflectometer often needs to measure the deflections at multiple positions of the bridge. The existing 2D-DIC-based measurement methods usually use a laser rangefinder to measure the distance from each point to the camera to obtain the scale factor for the point. It is only suitable for the deflection measurements of a few points since manually measuring distances for a large number of points is time consuming and impractical. In this paper, a novel method for full-field bridge deflection measurement based on off-axis DIC is proposed. Because the bridge is usually a slender structure and the region of interest on the bridge is often a narrow band, the new approach can determine the scale factors of all the points of interest with a spatial straight-line fitting scheme. Moreover, the proposed technique employs reliability-guided processing and a fast initial parameter estimation strategy for real-time and accurate image-matching analysis. An indoor cantilever beam experiment verified the accuracy of the proposed approach, and a field test of a high-speed railway bridge demonstrated the robustness and practicability of the technique.


2018 ◽  
Vol 885 ◽  
pp. 304-310
Author(s):  
Matthias Faes ◽  
David Moens

This paper presents the application of a new method for the identification and quantification of interval valued spatial uncertainty under scarce data.Specifically, full-field strain measurements, obtained via Digital Image Correlation, are applied in conjunction with a quasi-static finite element model.To apply these high-dimensional but scarce data, extensions to the novel method are introduced.A case study, investigating spatial uncertainty in Young's modulus of PA-12 parts, produced via Laser Sintering, shows that an accurate quantification of the constituting uncertainty is possible, albeit being somewhat conservative with respect to deterministic values reported in literature.


Sign in / Sign up

Export Citation Format

Share Document