scholarly journals Light-Front Field Theory on Current Quantum Computers

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 597
Author(s):  
Michael Kreshchuk ◽  
Shaoyang Jia ◽  
William Kirby ◽  
Gary Goldstein ◽  
James Vary ◽  
...  

We present a quantum algorithm for simulation of the quantum field theory in light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization (BLFQ) framework. The BLFQ formulation of the quantum field theory allows one to readily import techniques developed for digital quantum simulation of quantum chemistry. This provides a method that can be scaled up to the simulation of full, relativistic quantum field theories in the quantum advantage regime. As an illustration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBM Vigo chip. This is the first time that the light-front approach to the quantum field theory has been used to enable simulation of a real physical system on a quantum computer.

2007 ◽  
Vol 05 (01n02) ◽  
pp. 223-228 ◽  
Author(s):  
ANNALISA MARZUOLI ◽  
MARIO RASETTI

We resort to considerations based on topological quantum field theory to outline the development of a possible quantum algorithm for the evaluation of the permanent of a 0 - 1 matrix. Such an algorithm might represent a breakthrough for quantum computation, since computing the permanent is considered a "universal problem", namely, one among the hardest problems that a quantum computer can efficiently handle.


2014 ◽  
Vol 14 (11&12) ◽  
pp. 1014-1080 ◽  
Author(s):  
Stephen P. Jordan ◽  
Keith S. M. Lee ◽  
John Preskill

Quantum field theory provides the framework for the most fundamental physical theories to be confirmed experimentally and has enabled predictions of unprecedented precision. However, calculations of physical observables often require great computational complexity and can generally be performed only when the interaction strength is weak. A full understanding of the foundations and rich consequences of quantum field theory remains an outstanding challenge. We develop a quantum algorithm to compute relativistic scattering amplitudes in massive $\phi^4$ theory in spacetime of four and fewer dimensions. The algorithm runs in a time that is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. Thus, it offers exponential speedup over existing classical methods at high precision or strong coupling.


Relativistic quantum field theory is extended so that it can be used as a basis for a qualitative study of nuclear resonance reactions. The general resonance formulae are derived in a relativistic form, and the interference between neighbouring levels is investigated. It is assumed that resonance arises from the formation of a compound nucleus which subsequently disintegrates. The essential features of resonance and level width are, in the first instance, derived from a simple resonating model. This shows that, while resonance arises directly from the Feynman propagator in lowest approximation, the level widths come from considering an infinite series of Feynman-Dyson diagrams; these can be represented by an integral equation. In considering a general nuclear resonance reaction it is necessary to use compound propagators, which were introduced by the author in the first paper of this series. The general form of the compound propagator is obtained in stable approximation, and the integral equation is derived which allows for the possibility of disintegration. The solution of this equation leads to the relativistic formulae for a general resonance reaction.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950037 ◽  
Author(s):  
R. G. G. Amorim ◽  
F. C. Khanna ◽  
A. P. C. Malbouisson ◽  
J. M. C. Malbouisson ◽  
A. E. Santana

The tilde conjugation rule in thermofield dynamics, equivalent to the modular conjugation in a [Formula: see text]-algebra, is used to develop unitary representations of the Poincaré group, where the Hilbert space has the phase space content, a symplectic Hilbert space. The state is described by a quasi-amplitude of probability, which is a sort of wave function in phase space, associated with the Wigner function. The quantum field theory in phase space is then constructed, including the quantization rules for the Klein–Gordon and the Dirac fields, the derivation of the electrodynamics in phase space and elements of a relativistic quantum kinetic theory. Towards a physical interpretation of the theory, propagators are associated with the corresponding Wigner functions. The Feynman rules follow accordingly with vertices similar to those of usual non-Abelian quantum field theories.


Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Sign in / Sign up

Export Citation Format

Share Document