scholarly journals Enhanced Parameter Estimation with Periodically Driven Quantum Probe

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1333
Author(s):  
Peter A. Ivanov

I propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn–Teller system composed of a single spin and two bosonic modes. I show that, in the first order of the frequency drive, the time-independent effective Hamiltonian describes spin-dependent interaction between the two bosonic modes. In the limit of high-frequency drive and low bosonic frequency, the quantum Jahn–Teller system exhibits critical behavior which can be used for high-precision quantum estimation. A major advantage of the scheme is the robustness of the system against spin decoherence, which allows it to perform parameter estimation with measurement time not limited by spin dephasing.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Jakob Meyer ◽  
Johannes Borregaard ◽  
Jens Eisert

AbstractWith an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their possible applications is a rapidly growing field of quantum information science. In this work, we demonstrate that variational quantum algorithms feasible on such devices address a challenge central to the field of quantum metrology: The identification of near-optimal probes and measurement operators for noisy multi-parameter estimation problems. We first introduce a general framework that allows for sequential updates of variational parameters to improve probe states and measurements and is widely applicable to both discrete and continuous-variable settings. We then demonstrate the practical functioning of the approach through numerical simulations, showcasing how tailored probes and measurements improve over standard methods in the noisy regime. Along the way, we prove the validity of a general parameter-shift rule for noisy evolutions, expected to be of general interest in variational quantum algorithms. In our approach, we advocate the mindset of quantum-aided design, exploiting quantum technology to learn close to optimal, experimentally feasible quantum metrology protocols.


1980 ◽  
Vol 20 (06) ◽  
pp. 521-532 ◽  
Author(s):  
A.T. Watson ◽  
J.H. Seinfeld ◽  
G.R. Gavalas ◽  
P.T. Woo

Abstract An automatic history-matching algorithm based onan optimal control approach has been formulated forjoint estimation of spatially varying permeability andporosity and coefficients of relative permeabilityfunctions in two-phase reservoirs. The algorithm usespressure and production rate data simultaneously. The performance of the algorithm for thewaterflooding of one- and two-dimensional hypotheticalreservoirs is examined, and properties associatedwith the parameter estimation problem are discussed. Introduction There has been considerable interest in thedevelopment of automatic history-matchingalgorithms. Most of the published work to date onautomatic history matching has been devoted tosingle-phase reservoirs in which the unknownparameters to be estimated are often the reservoirporosity (or storage) and absolute permeability (ortransmissibility). In the single-phase problem, theobjective function usually consists of the deviationsbetween the predicted and measured reservoirpressures at the wells. Parameter estimation, orhistory matching, in multiphase reservoirs isfundamentally more difficult than in single-phasereservoirs. The multiphase equations are nonlinear, and in addition to the porosity and absolutepermeability, the relative permeabilities of each phasemay be unknown and subject to estimation. Measurements of the relative rates of flow of oil, water, and gas at the wells also may be available forthe objective function. The aspect of the reservoir history-matchingproblem that distinguishes it from other parameterestimation problems in science and engineering is thelarge dimensionality of both the system state and theunknown parameters. As a result of this largedimensionality, computational efficiency becomes aprime consideration in the implementation of anautomatic history-matching method. In all parameterestimation methods, a trade-off exists between theamount of computation performed per iteration andthe speed of convergence of the method. Animportant saving in computing time was realized insingle-phase automatic history matching through theintroduction of optimal control theory as a methodfor calculating the gradient of the objective functionwith respect to the unknown parameters. Thistechnique currently is limited to first-order gradientmethods. First-order gradient methods generallyconverge more slowly than those of higher order.Nevertheless, the amount of computation requiredper iteration is significantly less than that requiredfor higher-order optimization methods; thus, first-order methods are attractive for automatic historymatching. The optimal control algorithm forautomatic history matching has been shown toproduce excellent results when applied to field problems. Therefore, the first approach to thedevelopment of a general automatic history-matchingalgorithm for multiphase reservoirs wouldseem to proceed through the development of anoptimal control approach for calculating the gradientof the objective function with respect to theparameters for use in a first-order method. SPEJ P. 521^


Author(s):  
Pei-Hao Fu ◽  
Qianqian Lv ◽  
Xiang-Long Yu ◽  
Jun-Feng Liu ◽  
Jiansheng Wu

Abstract A nodal ring semimetal (NRSM) can be driven to a spin-polarized NRSM or a spin-polarized Weyl semimetal (SWSM) by a high-frequency electromagnetic field. We investigate the conditions in realizing these phases and propose a switchable spin-polarized currents generator based on periodically driven NRSMs. Both bulk and surface polarized currents are investigated. The polarization of bulk current is sensitive to the amplitude of the driving field and robust against the direction and polarization of the driving, the opaqueness of the lead-device interface and the misalignment between the nodal ring and the interface, which provides sufficient flexibility in manipulating the devices. Similar switchable polarized surface currents are also expected, which is contributed by the Fermi arc surface state associated with the Weyl semimetal (WSM) phases. The generation of polarized currents and the polarization switching effect offer opportunities to design periodic driving controlled topological spintronics devices based on NRSMs.


2008 ◽  
Vol 41 (2) ◽  
pp. 14078-14083 ◽  
Author(s):  
J.W.C. Van Lint ◽  
Serge P. Hoogendoorn ◽  
A. Hegyi

1980 ◽  
Vol 12 (3) ◽  
pp. 727-745 ◽  
Author(s):  
D. P. Gaver ◽  
P. A. W. Lewis

It is shown that there is an innovation process {∊n} such that the sequence of random variables {Xn} generated by the linear, additive first-order autoregressive scheme Xn = pXn-1 + ∊n are marginally distributed as gamma (λ, k) variables if 0 ≦p ≦ 1. This first-order autoregressive gamma sequence is useful for modelling a wide range of observed phenomena. Properties of sums of random variables from this process are studied, as well as Laplace-Stieltjes transforms of adjacent variables and joint moments of variables with different separations. The process is not time-reversible and has a zero-defect which makes parameter estimation straightforward. Other positive-valued variables generated by the first-order autoregressive scheme are studied, as well as extensions of the scheme for generating sequences with given marginal distributions and negative serial correlations.


1980 ◽  
Vol 12 (03) ◽  
pp. 727-745 ◽  
Author(s):  
D. P. Gaver ◽  
P. A. W. Lewis

It is shown that there is an innovation process {∊ n } such that the sequence of random variables {X n } generated by the linear, additive first-order autoregressive scheme X n = pXn-1 + ∊ n are marginally distributed as gamma (λ, k) variables if 0 ≦p ≦ 1. This first-order autoregressive gamma sequence is useful for modelling a wide range of observed phenomena. Properties of sums of random variables from this process are studied, as well as Laplace-Stieltjes transforms of adjacent variables and joint moments of variables with different separations. The process is not time-reversible and has a zero-defect which makes parameter estimation straightforward. Other positive-valued variables generated by the first-order autoregressive scheme are studied, as well as extensions of the scheme for generating sequences with given marginal distributions and negative serial correlations.


2016 ◽  
Vol 93 (14) ◽  
Author(s):  
Takahiro Mikami ◽  
Sota Kitamura ◽  
Kenji Yasuda ◽  
Naoto Tsuji ◽  
Takashi Oka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document