scholarly journals GC-MS profile and antibacterial potency of thermophilic <em>Bacillus licheniformis</em> LMB3701 isolated from Dbagh hot spring in Algeria

2021 ◽  
Author(s):  
Nadia Aissaoui ◽  
Fatima Nas ◽  
Nihel Klouche-Khelil
2018 ◽  
Vol 7 (3) ◽  
Author(s):  
Budiasih Wahyuntari., dkk

Isolate I-5 was isolated from Ciseeng hot spring, West Java and was identified as Bacillus licheniformis I-5. The isolate produces extracellular xylanolytic enzymes on Oatspelt containing Luria broth agar medium. Optimal activity of the crude enzyme was  observed at 50ºC and pH 7. The effect of sodium dodecyl sulphate, b-mercaptoethanol and Triton-X100 were observed. Incubating the crude enzyme in 1.5% SDS and 1.5% b-mercaptoethanol at 50oC for 90 minutes then adding Triton-X100 at final concentration of 3.5% for 45 minutes only reduced 5.75% of the initial enzyme activity. SDS/PAGE and zymogram analysis showed that at least two xylanolytic enzymes presence in the crude enzyme. The molecular weight of the enzyme was estimated about 127 and 20kD. The enzyme hydrolysed xylan into xylobiose, xylotriose and other longer xylooligosaccharides. Thermal stability of the crude enzyme was observed at 50, 60, and 70oC and pH 7 and 8. The results showed that the half time of the crude enzyme incubated at 50, 60, and 70oC pH 7 was 2 hours 55 minutes; 2 hours 33 minutes and 1 hour 15 minutes respectively. The half time at 50, 60 and 70oC, pH 8 was 2 hours 48 minutes; 1 hour 22 minutes and 1 hour 9 minutes respectively.keywords: Xilanase, Bacillus licheniformis I-5, thermal stability


2017 ◽  
Vol 118 (4) ◽  
Author(s):  
Ali Deljou ◽  
Iman Arezi

Background and Purpose: Amylases are most important industrial enzymes that account for about 30% of the world’s food, feed, fermentation, textile, detergent and cellulosic industries. This study aimed at optimum production of thermostable α-amylase via moderate thermophilic bacterium (Bacillus licheniformis) which was recently isolated from Qinarje Hot spring.Material and Methods: Initially, ability of bacterium for amylase activity was determined by starch hydrolysis test using Gram’s iodine staining. Then bacterial growth pattern and amylase production curves in basal production medium were graphically determined at different time intervals. Finally, effect of different temperature, pH, carbon source, nitrogen source, minerals and inoculum size were studied on bacterial growth and amylase production using turbidimetric and DNS method, respectively.Results: Optimum enzyme production achieved after 84 hours of inoculation from cultures growing at 40 ˚C and pH 9.0 in a medium containing 0.03% (w/v) of CaCl2, compared to the basal medium, results showed that the best enzyme production happened with inoculum size of 4% (v/v). The addition of 1% (w/v) rice husk (as a Carbon source) enhanced enzyme productivity up to 160% and substitution of the peptone and yeast extract with 1% (w/v) of tryptone (as a Nitrogen source) increased the α-amylase production up to 160%.Conclusion: Our findings show that B. licheniformis-AZ2 strain has an ability to produce the thermostable α-amylase which is suitable in starch processing and food industries. To be commercialized, further investigation is required for enhancement of the enzyme production.Keywords: Bacillus licheniformis; Optimization; Basal medium; Agricultural by-products.


2015 ◽  
Vol 77 (25) ◽  
Author(s):  
Nurul Aqilah Ab. Shukor ◽  
Azura Amid ◽  
Mohamed Ismail ◽  
Nadiah Syuhada Abd Samad

Fibrinolytic enzymes were widely used in the treatment of cardiovascular diseases. However, the efficiency of the commercial enzymes are still lack of perfection because there are many side effects as well as not tolerant to downstream processing such as heat sensitive during spray drying process. Therefore, this study presents newly isolated thermophiles bacteria producing fibrinolytic enzyme. Sample was collected from Hot Spring Selayang at Selayang Selangor. Spread plate agar containing skim milk powder growth at pH 7, 53  for 24 hours was utilized to isolate thermotolerant bacteria producing protease. Further isolation on bacteria producing fibrinolytic enzyme was carried out using fibrin plate. 16S rDNA gene sequence analysis was used to identify the genotype of the isolates. 27 colonies of thermotolerant bacteria were isolated, however, only 19 of them showing proteolytic activity. All of the 19 isolates are motile and cocci in shapes, with 4 types of arrangement, which are single, diplo (pair), strepto (chain) and staphylo (cluster). HSP04 and HSP11 are gram positive bacteria and others are gram negative. From 19 isolates only 6 were chosen for further analysis. HSP23 showed the highest fibrinolytic activity compared with others. HSP23 was identified as Bacillus licheniformis with 98 % similarity to Bacillus licheniformis DCM 13 and Bacillus licheniformis strain ATCC 14580.


2021 ◽  
Vol 59 (3) ◽  
Author(s):  
Krzysztof Makowski ◽  
Martyna Leszczewicz ◽  
Natalia Broncel ◽  
Lidia Lipińska-Zubrycka ◽  
Adrian Głębski ◽  
...  

Research background. Cellulose is an ingredient of waste materials that can be converted to other valuable substances. This is possible provided that, the polymer molecule will be degraded to smaller particles, used as a carbon source by microorganisms. Because of the frequently applied methods of pre-treatment of lignocellulosic materials, the cellulases derived from thermophilic microorganisms are particularly desirable. Experimental approach. We were looking for cellulolytic microorganisms able to grow at 50 °C. We described their morphological features and biochemical characteristics based on CMCase activity and the api®ZYM. The growth curves, during incubation at 50 °C, were examined using the microbioreactor BioLector®. Results and conclusions. 40 bacterial strains were isolated from fermenting hay, geothermal karst spring, hot spring and geothermal pond at 50 °C. The vast majority of the bacteria were Gram-positive and rod-shaped with the maximum growth temperature of at least 50 °C. We also demonstrated a large diversity of biochemical characteristics among the microorganism. The CMCase activity was confirmed for 27 strains. However, the hydrolysis capacities (HC) were significant in bacterial strains: BBLN1, BSO6, BSO10, BSO13 and BSO14, and reached 2.74, 1.62, 1.30, 1.38 and 8.02 respectively. Rapid and stable growth was presented, among others, by BBLN1, BSO10, BSO13 and BSO14. The strains fulfilled the selection conditions and were identified based on the 16S rDNA sequences. BBLN1, BSO10, BSO13 were classified as Bacillus licheniformis, whereas BSO14 as Paenibacillus lactis. Novelty and scientific contribution. We described cellulolytic activity and biochemical characteristics of many bacteria isolated from hot environments. We are also the first to report the cellulolytic activity of thermotolerant P.s lactis. Described strains can be a source of new thermostable cellulases, which are extremely desirable in various branches of the circular bioeconomy.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Marwan Jawad Msarah ◽  
Ayesha Firdose ◽  
Izyanti Ibrahim ◽  
Wan Syaidatul Aqma

Screening of new source of novel and industrially useful enzymes is a key research pursuit in enzyme biotechnology. The study aims to report the characteristics of novel thermophilic microorganisms isolated from Sungai Klah (SK) Hot Spring, Perak, Malaysia, that can produce α-amylase. The morphological and biochemical properties were examined for SUNGC2 sample. The isolate was further screened for amylase, followed by 16S rRNA and analytical profile index (API) test. This isolate was further subjected to pH optimisation for α-amylase production. It was found that SUNGC2 was an α-amylase producer and was identified as Bacillus licheniformis SUNGC2 with NCBI accession numbers MH062901. The enzyme was found to exhibit an optimum temperature of 50°C and a pH of 7.0. The relative activity of the enzyme was obtained based on the improvement of the culture conditions. The highest amount of amylase production was 24.65 U/mL at pH 7.0, consecutively the growth was also highest at pH 7.0 with a 9.45-fold increase in specific activity by ammonium phosphate precipitation of 80% (w/v). The results showed that the bacteria isolated from the hot spring are a significant source of thermophilic enzymes that are highly promising in biotechnology.


Sign in / Sign up

Export Citation Format

Share Document