scholarly journals Enhanced Oil Recovery by Polymer Flooding: Direct, Low-Cost Visualization in a Hele–Shaw Cell

2019 ◽  
Vol 9 (3) ◽  
pp. 186
Author(s):  
Yukie Tanino ◽  
Amer Syed

We designed a hands-on laboratory exercise to demonstrate why injecting an aqueous polymer solution into an oil reservoir (commonly known as “polymer flooding”) enhances oil production. Students are split into three groups of two to three. Each group is assigned to a packed Hele–Shaw cell pre-saturated with oil, our laboratory model of an oil reservoir, and is given an aqueous solution of known polymer concentration to inject into the model reservoir to “push” the oil out. At selected intervals, students record the oil produced, take photos of the cell using their smartphones, and demarcate the invading polymer front on an acetate sheet. There is ample time for students to observe the experiments of other groups and compare the different flow patterns that arise from different polymer concentrations. Students share their results with other groups at the end of the session, which require effective data presentation and communication. Both the in-session tasks and data sharing require team work. While this experiment was designed for a course on Enhanced Oil Recovery for final year undergraduate and MSc students in petroleum engineering, it can be readily adapted to courses on groundwater hydrology or subsurface transport by selecting different test fluids.

2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2606
Author(s):  
Hossein Saberi ◽  
Ehsan Esmaeilnezhad ◽  
Hyoung Jin Choi

Polymer flooding is an important enhanced oil recovery (EOR) method with high performance which is acceptable and applicable on a field scale but should first be evaluated through lab-scale experiments or simulation tools. Artificial intelligence techniques are strong simulation tools which can be used to evaluate the performance of polymer flooding operation. In this study, the main parameters of polymer flooding were selected as input parameters of models and collected from the literature, including: polymer concentration, salt concentration, rock type, initial oil saturation, porosity, permeability, pore volume flooding, temperature, API gravity, molecular weight of the polymer, and salinity. After that, multilayer perceptron (MLP), radial basis function, and fuzzy neural networks such as the adaptive neuro-fuzzy inference system were adopted to estimate the output EOR performance. The MLP neural network had a very high ability for prediction, with statistical parameters of R2 = 0.9990 and RMSE = 0.0002. Therefore, the proposed model can significantly help engineers to select the proper EOR methods and API gravity, salinity, permeability, porosity, and salt concentration have the greatest impact on the polymer flooding performance.


2020 ◽  
Vol 20 (6) ◽  
pp. 1382
Author(s):  
Tengku Amran Tengku Mohd ◽  
Shareena Fairuz Abdul Manaf ◽  
Munawirah Abd Naim ◽  
Muhammad Shafiq Mat Shayuti ◽  
Mohd Zaidi Jaafar

Polymer flooding could enhance the oil recovery by increasing the viscosity of water, thus, improving the mobility control and sweep efficiency. It is essential to explore natural sources of polymer, which is biologically degradable and negligible to environmental risks. This research aims to produce a biodegradable polymer from terrestrial mushroom, analyze the properties of the polymer and investigate the oil recovery from polymer flooding. Polysaccharide biopolymer was extracted from mushroom and characterized using Fourier Transform Infrared Spectrometer (FTIR), while the polymer viscosity was investigated using an automated microviscometer. The oil recovery tests were conducted at room temperature using a sand pack model. It was found that polymer viscosity increases with increasing polymer concentration and decreases when increase in temperature, salinity, and concentration of divalent ions. The oil recovery tests showed that a higher polymer concentration of 3000 ppm had recovered more oil with an incremental recovery of 25.8% after waterflooding, while a polymer concentration of 1500 pm obtained incremental 22.2% recovery of original oil in place (OOIP). The oil recovery from waterflooding was approximately 25.4 and 24.2% of the OOIP, respectively. Therefore, an environmentally friendly biopolymer was successfully extracted, which is potential for enhanced oil recovery (EOR) application, but it will lose its viscosity performance at certain reservoir conditions.


2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Marzieh Riahinezhad ◽  
Laura Romero-Zerón ◽  
Neil McManus ◽  
Alexander Penlidis

Author(s):  
Sarkyt Kudaivergenov ◽  
Iskander Gusenov ◽  
Birzhan Zhappasbayev ◽  
Alexey Shakhvorostov

2019 ◽  
Author(s):  
Shuling Gao ◽  
Shukai Peng ◽  
Peihui Han ◽  
Guo Chen ◽  
Haibo Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document