scholarly journals New Image Encryption Algorithm Using Hyperchaotic System and Fibonacci Q-Matrix

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1066
Author(s):  
Khalid M. Hosny ◽  
Sara T. Kamal ◽  
Mohamed M. Darwish ◽  
George A. Papakostas

In the age of Information Technology, the day-life required transmitting millions of images between users. Securing these images is essential. Digital image encryption is a well-known technique used in securing image content. In image encryption techniques, digital images are converted into noise images using secret keys, where restoring them to their originals required the same keys. Most image encryption techniques depend on two steps: confusion and diffusion. In this work, a new algorithm presented for image encryption using a hyperchaotic system and Fibonacci Q-matrix. The original image is confused in this algorithm, utilizing randomly generated numbers by the six-dimension hyperchaotic system. Then, the permutated image diffused using the Fibonacci Q-matrix. The proposed image encryption algorithm tested using noise and data cut attacks, histograms, keyspace, and sensitivity. Moreover, the proposed algorithm’s performance compared with several existing algorithms using entropy, correlation coefficients, and robustness against attack. The proposed algorithm achieved an excellent security level and outperformed the existing image encryption algorithms.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1770
Author(s):  
Xiaoqiang Zhang ◽  
Xuangang Yan

To prevent the leakage of image content, image encryption technology has received increasing attention. Most current algorithms are only suitable for the images of certain types and cannot update keys in a timely manner. To tackle such problems, we propose an adaptive chaotic image encryption algorithm based on RNA and pixel depth. Firstly, a novel chaotic system, two-dimensional improved Logistic-adjusted-Sine map is designed. Then, we propose a three-dimensional adaptive Arnold transform for scrambling. Secondly, keys are generated by the hash values of the plain image and current time to achieve one-image, one-key, and one-time pad simultaneously. Thirdly, we build a pre-permuted RNA cube for 3D adaptive scrambling by pixel depth, chaotic sequences, and adaptive RNA coding. Finally, selective diffusion combined with pixel depth and RNA operations is performed, in which the RNA operators are determined by the chemical structure and properties of amino acids. Pixel depth is integrated into the whole procedure of parameter generation, scrambling, and diffusion. Experiments and algorithm analyses show that our algorithm has strong security, desirable performance, and a broader scope of application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Ying-Qian Zhang ◽  
Xin He ◽  
Xing-Yuan Wang

AbstractIn this paper, a novel image encryption algorithm based on the Once Forward Long Short Term Memory Structure (OF-LSTMS) and the Two-Dimensional Coupled Map Lattice (2DCML) fractional-order chaotic system is proposed. The original image is divided into several image blocks, each of which is input into the OF-LSTMS as a pixel sub-sequence. According to the chaotic sequences generated by the 2DCML fractional-order chaotic system, the parameters of the input gate, output gate and memory unit of the OF-LSTMS are initialized, and the pixel positions are changed at the same time of changing the pixel values, achieving the synchronization of permutation and diffusion operations, which greatly improves the efficiency of image encryption and reduces the time consumption. In addition the 2DCML fractional-order chaotic system has better chaotic ergodicity and the values of chaotic sequences are larger than the traditional chaotic system. Therefore, it is very suitable to image encryption. Many simulation results show that the proposed scheme has higher security and efficiency comparing with previous schemes.


2021 ◽  
pp. 676-687
Author(s):  
Jianchao Tang ◽  
Liyong Bao ◽  
Hongwei Ding ◽  
Zheng Guan ◽  
Min He

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xuncai Zhang ◽  
Lingfei Wang ◽  
Ying Niu ◽  
Guangzhao Cui ◽  
Shengtao Geng

In this paper, an image encryption algorithm based on the H-fractal and dynamic self-invertible matrix is proposed. The H-fractal diffusion encryption method is firstly used in this encryption algorithm. This method crosses the pixels at both ends of the H-fractal, and it can enrich the means of pixel diffusion. The encryption algorithm we propose uses the Lorenz hyperchaotic system to generate pseudorandom sequences for pixel location scrambling and self-invertible matrix construction to scramble and diffuse images. To link the cipher image with the original image, the initial values of the Lorenz hyperchaotic system are determined using the original image, and it can enhance the security of the encryption algorithm. The security analysis shows that this algorithm is easy to implement. It has a large key space and strong key sensitivity and can effectively resist plaintext attacks.


Sign in / Sign up

Export Citation Format

Share Document