scholarly journals User-Driven Fine-Tuning for Beat Tracking

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1518
Author(s):  
António S. Pinto ◽  
Sebastian Böck ◽  
Jaime S. Cardoso ◽  
Matthew E. P. Davies

The extraction of the beat from musical audio signals represents a foundational task in the field of music information retrieval. While great advances in performance have been achieved due the use of deep neural networks, significant shortcomings still remain. In particular, performance is generally much lower on musical content that differs from that which is contained in existing annotated datasets used for neural network training, as well as in the presence of challenging musical conditions such as rubato. In this paper, we positioned our approach to beat tracking from a real-world perspective where an end-user targets very high accuracy on specific music pieces and for which the current state of the art is not effective. To this end, we explored the use of targeted fine-tuning of a state-of-the-art deep neural network based on a very limited temporal region of annotated beat locations. We demonstrated the success of our approach via improved performance across existing annotated datasets and a new annotation-correction approach for evaluation. Furthermore, we highlighted the ability of content-specific fine-tuning to learn both what is and what is not the beat in challenging musical conditions.

2021 ◽  
Vol 2083 (4) ◽  
pp. 042017
Author(s):  
Yingdong Ru

Abstract Music symbol recognition is an important part of Optical Music Recognition (OMR), Chord recognition is one of the most important research contents in the field of music information retrieval. It plays an important role in information processing, music structure analysis, and recommendation systems. Aiming at the problem of low chord recognition accuracy in the OMR recognition model, the article proposes a chord recognition method based on the YOLOV4 neural network model. First, the YOLOV4 network model is used to train single-voice scores to obtain the best training model. Then, the scores containing chords are trained through neural network fine-tuning technology. The experimental results show that the method recognizes the chords with great results, the model was tested on the test set generated by MuseScore. The experimental results show that the accuracy of note recognition is high, which can reach the accuracy of duration value of 0.96 which is higher than the accuracy of note recognition of other score recognition models.


2018 ◽  
Author(s):  
John-William Sidhom ◽  
Drew Pardoll ◽  
Alexander Baras

AbstractMotivationThe immune system has potential to present a wide variety of peptides to itself as a means of surveillance for pathogenic invaders. This means of surveillances allows the immune system to detect peptides derives from bacterial, viral, and even oncologic sources. However, given the breadth of the epitope repertoire, in order to study immune responses to these epitopes, investigators have relied on in-silico prediction algorithms to help narrow down the list of candidate epitopes, and current methods still have much in the way of improvement.ResultsWe present Allele-Integrated MHC (AI-MHC), a deep learning architecture with improved performance over the current state-of-the-art algorithms in human Class I and Class II MHC binding prediction. Our architecture utilizes a convolutional neural network that improves prediction accuracy by 1) allowing one neural network to be trained on all peptides for all alleles of a given class of MHC molecules by making the allele an input to the net and 2) introducing a global max pooling operation with an optimized kernel size that allows the architecture to achieve translational invariance in MHC-peptide binding analysis, making it suitable for sequence analytics where a frame of interest needs to be learned in a longer, variable length sequence. We assess AI-MHC against internal independent test sets and compare against all algorithms in the IEDB automated server benchmarks, demonstrating our algorithm achieves state-of-the-art for both Class I and Class II prediction.Availability and ImplementationAI-MHC can be used via web interface at baras.pathology.jhu.edu/[email protected]


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


Author(s):  
Youngmin Ro ◽  
Jongwon Choi ◽  
Dae Ung Jo ◽  
Byeongho Heo ◽  
Jongin Lim ◽  
...  

In person re-identification (ReID) task, because of its shortage of trainable dataset, it is common to utilize fine-tuning method using a classification network pre-trained on a large dataset. However, it is relatively difficult to sufficiently finetune the low-level layers of the network due to the gradient vanishing problem. In this work, we propose a novel fine-tuning strategy that allows low-level layers to be sufficiently trained by rolling back the weights of high-level layers to their initial pre-trained weights. Our strategy alleviates the problem of gradient vanishing in low-level layers and robustly trains the low-level layers to fit the ReID dataset, thereby increasing the performance of ReID tasks. The improved performance of the proposed strategy is validated via several experiments. Furthermore, without any addons such as pose estimation or segmentation, our strategy exhibits state-of-the-art performance using only vanilla deep convolutional neural network architecture.


Author(s):  
Sunghwan Joo ◽  
Sungmin Cha ◽  
Taesup Moon

We propose DoPAMINE, a new neural network based multiplicative noise despeckling algorithm. Our algorithm is inspired by Neural AIDE (N-AIDE), which is a recently proposed neural adaptive image denoiser. While the original NAIDE was designed for the additive noise case, we show that the same framework, i.e., adaptively learning a network for pixel-wise affine denoisers by minimizing an unbiased estimate of MSE, can be applied to the multiplicative noise case as well. Moreover, we derive a double-sided masked CNN architecture which can control the variance of the activation values in each layer and converge fast to high denoising performance during supervised training. In the experimental results, we show our DoPAMINE possesses high adaptivity via fine-tuning the network parameters based on the given noisy image and achieves significantly better despeckling results compared to SAR-DRN, a state-of-the-art CNN-based algorithm.


2020 ◽  
Vol 34 (04) ◽  
pp. 5784-5791
Author(s):  
Sungho Shin ◽  
Jinhwan Park ◽  
Yoonho Boo ◽  
Wonyong Sung

Quantization of deep neural networks is extremely essential for efficient implementations. Low-precision networks are typically designed to represent original floating-point counterparts with high fidelity, and several elaborate quantization algorithms have been developed. We propose a novel training scheme for quantized neural networks to reach flat minima in the loss surface with the aid of quantization noise. The proposed training scheme employs high-low-high-low precision in an alternating manner for network training. The learning rate is also abruptly changed at each stage for coarse- or fine-tuning. With the proposed training technique, we show quite good performance improvements for convolutional neural networks when compared to the previous fine-tuning based quantization scheme. We achieve the state-of-the-art results for recurrent neural network based language modeling with 2-bit weight and activation.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 810
Author(s):  
Carlos Hernandez-Olivan ◽  
Ignacio Zay Pinilla ◽  
Carlos Hernandez-Lopez ◽  
Jose R. Beltran

Automatic music transcription (AMT) is a critical problem in the field of music information retrieval (MIR). When AMT is faced with deep neural networks, the variety of timbres of different instruments can be an issue that has not been studied in depth yet. The goal of this work is to address AMT transcription by analyzing how timbre affect monophonic transcription in a first approach based on the CREPE neural network and then to improve the results by performing polyphonic music transcription with different timbres with a second approach based on the Deep Salience model that performs polyphonic transcription based on the Constant-Q Transform. The results of the first method show that the timbre and envelope of the onsets have a high impact on the AMT results and the second method shows that the developed model is less dependent on the strength of the onsets than other state-of-the-art models that deal with AMT on piano sounds such as Google Magenta Onset and Frames (OaF). Our polyphonic transcription model for non-piano instruments outperforms the state-of-the-art model, such as for bass instruments, which has an F-score of 0.9516 versus 0.7102. In our latest experiment we also show how adding an onset detector to our model can outperform the results given in this work.


Sign in / Sign up

Export Citation Format

Share Document