scholarly journals FPGA Implementation of the Range-Doppler Algorithm for Real-Time Synthetic Aperture Radar Imaging

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2133
Author(s):  
Yeongung Choi ◽  
Dongmin Jeong ◽  
Myeongjin Lee ◽  
Wookyung Lee ◽  
Yunho Jung

In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering unit (MFU) and an RCMC processing unit (RPU) are required for real-time processing. Therefore, the proposed RDA-based SAR processor contains an MFU that uses the mixed-radix multi-path delay commutator (MRMDC) FFT and an RPU. The MFU reduces the memory requirements by applying a decimation-in-frequency (DIF) FFT and decimation-in-time (DIT) IFFT. The RPU provides a variable tap size and variable interpolation kernel. In addition, the MFU and RPU are designed to enable parallel processing of four 32-bit which are transferred via a 128-bit AXI bus. The proposed RDA-based SAR processor was designed using Verilog-HDL and implemented in a Xilinx UltraScale+ MPSoC FPGA device. After comparing the execution time taken by the proposed SAR processor with that taken by an ARM cortex-A53 microprocessor, we observed a 85-fold speedup for a 2048 × 2048 pixel image. A performance evaluation based on related studies indicated that the proposed processor achieved an execution time that was approximately 6.5 times less than those of previous FPGA implementations of RDA processors.

Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 391-399 ◽  
Author(s):  
Hamid Dehghani ◽  
Navid Daryasafar

Abstract Using Probability Hypothesis Density (PHD) filtering, a novel approach is proposed in this paper for simultaneous tracking of multiple moving targets in received data by Inverse Synthetic Aperture Radar (ISAR) system. Since PHD filtering approach is implemented successively in prediction and update steps, its performance quality will obviously be higher in “Spotlight” imaging mode than in “Stripmap”. Thus, its application to Spotlight mode is generally more logical. The idea to integrate tracking capability into ISAR system processor is to sort radar received data to correct Range Cell Migration (RCM) prior to tracking operations. Clearly, Range Cell Migration Compensation (RCMC) approach is different from this approach in image formation process, in terms of their implementation phase. However, they are implemented in a similar way. As simulation results reveal, applying Range Cell Migration Compensation to the raw data received by ISAR before tracking operation, results in high quality tracking of moving targets.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6026
Author(s):  
Wei Pu ◽  
Junjie Wu ◽  
Yulin Huang ◽  
Jianyu Yang

The imagery of airborne highly squinted synthetic aperture radar (SAR) with curved trajectory is a challenging task due to the translational-variant range cell migration (RCM) and azimuth modulation. However, in most cases of practical application, the curved trajectory cannot be accurately known, which brings greater difficulties to the imaging problem. To accommodate these issues, we propose a novel motion modelling and optimisation based imaging algorithm for the highly squinted SAR with unknown curved trajectory. First, to correct the translational-variant RCM, a coarse-to-fine RCM correction scheme as well as a range perturbation approach is applied. Afterwards, an optimisation model of motion information under the criterion of minimum entropy is built during the azimuth processing by nonlinear chirp scaling (NLCS). Correspondingly, a differential evolution (DE) optimisation strategy is proposed to estimate the motion information in an iterative manner. We empirically compare the proposed algorithms with several state-of-the-art highly squinted curved SAR imaging algorithms. Numerical results show the effectiveness of the proposed method in the case without any prior information of the curved trajectory.


Sign in / Sign up

Export Citation Format

Share Document