scholarly journals Central Energy Storage System to Reduce the Harmful Effects of PV Systems under a High Penetration Scenario

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2418
Author(s):  
Elso Rodríguez ◽  
Nimrod Vázquez ◽  
Jaime Arau ◽  
Rene Osorio ◽  
Fernando Medina ◽  
...  

Photovoltaic (PV) systems are used to generate electricity and they are considered less aggressive in their environmental impact. These systems require no further maintenance once they are installed, they do not pollute the environment and their average lifespan is high. These are the reasons why they are considered a good alternative for electricity generation. However, PV systems have different challenges to solve when they are connected to low voltage distribution grids and one of them is related to the power quality when there is a high penetration of PV systems, when voltage variations usually appear. In this paper, a central energy storage system (ESS) is considered to alleviate grid voltage variations under a high penetration scenario of PV systems instead of using multiples ESS. The proposal controls the energy injected into the grid to maintain the voltage variation within the standard, no limitations are imposed on the PV systems, and then as an advantage of the proposal, the PVs’ available energy is fully delivered to the grid. In addition, in the absence of sunlight the ESS may provide power to the grid. An analysis and experimental setup were built to validate the proposed scheme.


2020 ◽  
Vol 12 (15) ◽  
pp. 6154 ◽  
Author(s):  
Hui Wang ◽  
Jun Wang ◽  
Zailin Piao ◽  
Xiaofang Meng ◽  
Chao Sun ◽  
...  

High-penetration grid-connected photovoltaic (PV) systems can lead to reverse power flow, which can cause adverse effects, such as voltage over-limits and increased power loss, and affect the safety, reliability and economic operations of the distribution network. Reasonable energy storage optimization allocation and operation can effectively mitigate these disadvantages. In this paper, the optimal location, capacity and charge/discharge strategy of the energy storage system were simultaneously performed based on two objective functions that include voltage deviations and active power loss. The membership function and weighting method were used to combine the two objectives into a single objective. An energy storage optimization model for a distribution network considering PV and load power temporal changes was thus established, and the improved particle swarm optimization algorithm was utilized to solve the problem. Taking the Institute of Electrical and Electronic Engineers (IEEE)-33 bus system as an example, the optimal allocation and operation of the energy storage system was realized for the access of high penetration single-point and multi-point PV systems in the distribution network. The results of the power flow optimization in different scenarios were compared. The results show that using the proposed approach can improve the voltage quality, reduce the power loss, and reduce and smooth the transmission power of the upper-level grid.



Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.



2021 ◽  
Author(s):  
V. R. Riboldi ◽  
T. R. Ricciardi ◽  
P. A. B. Block ◽  
G. F. Rissi ◽  
T. Ji ◽  
...  


Author(s):  
Zaid H. Ali ◽  
Ziyaad H. Saleh ◽  
Raid W. Daoud ◽  
Ahmed H. Ahmed

<p><span>This paper proposes a methodology for designing and operating a microgrid (MG) for the main campus of the Technical Institution Hawija. In this MG, a battery energy storage system (BESS), photovoltaic (PV) generation system, and controllable loads are included. Due to the high penetration of the PVs, over-voltage issues may occur in this MG. A novel operation strategy is considered by coordinating the BESS, PVs, and loads to prevent power outages and accomplish a secure operation of this MG. In this proposed approach, droop controllers have been implemented to provide the appropriate references for the PVs and BESS to maintain the voltage of the MG within a secure range. The generation of the PVs may be curtailed to guarantee the fidelity of the voltage. The intended simulations will be based on MATLAB/Simulink to show the efficacy of the intended design.</span></p><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML&amp;delayStartupUntil=configured"></script><script id="texAllTheThingsPageScript" type="text/javascript" src="chrome-extension://cbimabofgmfdkicghcadidpemeenbffn/js/pageScript.js"></script>



Author(s):  
Moudud Ahmed ◽  
Lasantha Gunaruwan Meegahapola ◽  
Manoj Datta ◽  
Arash Vahidnia


Author(s):  
D.V.N. Ananth ◽  
G.V. Nagesh Kumar

In this paper, enhanced field oriented control technique (EFOC) was adopted in Rotor Side Control (RSC) of DFIG converter for improved response during severe faults. The work is intended to damp pulsations in electromagnetic torque, improve voltage mitigation and limit surge currents and to enhance the operation of DFIG during voltage sags. The converter topology uses a battery energy storage system with capacitor storage system to further enhance operation of DFIG during faults. The battery and capacitor system in coordination provide additional real and reactive power support during faults and nearly constant voltage profile at stator and rotor terminals and limit overcurrents. For EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during overvoltage faults. The offset decomposition of flux will be oscillatory in a conventional FOC, whereas in EFOC it will damp quickly. A comparison is made with proposed methodology with battery energy storage system and a conventional system. Later the system performance with under voltage of 50% the rated voltage with fault at PCC during 0.8 to 1.2 seconds is analysed using simulation studies.



Sign in / Sign up

Export Citation Format

Share Document