scholarly journals Selective Disinfection Based on Directional Ultraviolet Irradiation and Artificial Intelligence

Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2557
Author(s):  
Ben Zierdt ◽  
Taichu Shi ◽  
Thomas DeGroat ◽  
Sam Furman ◽  
Nicholas Papas ◽  
...  

Ultraviolet disinfection has been proven to be effective for surface sanitation. Traditional ultraviolet disinfection systems generate omnidirectional radiation, which introduces safety concerns regarding human exposure. Large scale disinfection must be performed without humans present, which limits the time efficiency of disinfection. We propose and experimentally demonstrate a targeted ultraviolet disinfection system using a combination of robotics, lasers, and deep learning. The system uses a laser-galvo and a camera mounted on a two-axis gimbal running a custom deep learning algorithm. This allows ultraviolet radiation to be applied to any surface in the room where it is mounted, and the algorithm ensures that the laser targets the desired surfaces avoids others such as humans. Both the laser-galvo and the deep learning algorithm were tested for targeted disinfection.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bangtong Huang ◽  
Hongquan Zhang ◽  
Zihong Chen ◽  
Lingling Li ◽  
Lihua Shi

Deep learning algorithms are facing the limitation in virtual reality application due to the cost of memory, computation, and real-time computation problem. Models with rigorous performance might suffer from enormous parameters and large-scale structure, and it would be hard to replant them onto embedded devices. In this paper, with the inspiration of GhostNet, we proposed an efficient structure ShuffleGhost to make use of the redundancy in feature maps to alleviate the cost of computations, as well as tackling some drawbacks of GhostNet. Since GhostNet suffers from high computation of convolution in Ghost module and shortcut, the restriction of downsampling would make it more difficult to apply Ghost module and Ghost bottleneck to other backbone. This paper proposes three new kinds of ShuffleGhost structure to tackle the drawbacks of GhostNet. The ShuffleGhost module and ShuffleGhost bottlenecks are utilized by the shuffle layer and group convolution from ShuffleNet, and they are designed to redistribute the feature maps concatenated from Ghost Feature Map and Primary Feature Map. Besides, they eliminate the gap of them and extract the features. Then, SENet layer is adopted to reduce the computation cost of group convolution, as well as evaluating the importance of the feature maps which concatenated from Ghost Feature Maps and Primary Feature Maps and giving proper weights for the feature maps. This paper conducted some experiments and proved that the ShuffleGhostV3 has smaller trainable parameters and FLOPs with the ensurance of accuracy. And with proper design, it could be more efficient in both GPU and CPU side.


2020 ◽  
Vol 498 (4) ◽  
pp. 5620-5628
Author(s):  
Y Su ◽  
Y Zhang ◽  
G Liang ◽  
J A ZuHone ◽  
D J Barnes ◽  
...  

ABSTRACT The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network, ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for a sample of 318 massive clusters drawn from the IllustrisTNG simulations. The network is trained and tested with low-resolution mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent, 81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central gas densities, with an average ${\rm BAcc}=81{{\ \rm per\ cent}}$, or surface brightness concentrations, giving ${\rm BAcc}=73{{\ \rm per\ cent}}$. We use class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the network has utilized regions from cluster centres out to r ≈ 300 kpc and r ≈ 500 kpc to identify CC and NCC clusters, respectively. It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.


Author(s):  
Shuai Wang ◽  
Bo Kang ◽  
Jinlu Ma ◽  
Xianjun Zeng ◽  
Mingming Xiao ◽  
...  

Abstract Objective The outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 26 million cases of Corona virus disease (COVID-19) in the world so far. To control the spread of the disease, screening large numbers of suspected cases for appropriate quarantine and treatment are a priority. Pathogenic laboratory testing is typically the gold standard, but it bears the burden of significant false negativity, adding to the urgent need of alternative diagnostic methods to combat the disease. Based on COVID-19 radiographic changes in CT images, this study hypothesized that artificial intelligence methods might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control. Methods We collected 1065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with typical viral pneumonia. We modified the inception transfer-learning model to establish the algorithm, followed by internal and external validation. Results The internal validation achieved a total accuracy of 89.5% with a specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with a specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images, the first two nucleic acid test results were negative, and 46 were predicted as COVID-19 positive by the algorithm, with an accuracy of 85.2%. Conclusion These results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for timely and accurate COVID-19 diagnosis. Key Points • The study evaluated the diagnostic performance of a deep learning algorithm using CT images to screen for COVID-19 during the influenza season. • As a screening method, our model achieved a relatively high sensitivity on internal and external CT image datasets. • The model was used to distinguish between COVID-19 and other typical viral pneumonia, both of which have quite similar radiologic characteristics.


Diabetologia ◽  
2021 ◽  
Author(s):  
Frank G. Preston ◽  
Yanda Meng ◽  
Jamie Burgess ◽  
Maryam Ferdousi ◽  
Shazli Azmi ◽  
...  

Abstract Aims/hypothesis We aimed to develop an artificial intelligence (AI)-based deep learning algorithm (DLA) applying attribution methods without image segmentation to corneal confocal microscopy images and to accurately classify peripheral neuropathy (or lack of). Methods The AI-based DLA utilised convolutional neural networks with data augmentation to increase the algorithm’s generalisability. The algorithm was trained using a high-end graphics processor for 300 epochs on 329 corneal nerve images and tested on 40 images (1 image/participant). Participants consisted of healthy volunteer (HV) participants (n = 90) and participants with type 1 diabetes (n = 88), type 2 diabetes (n = 141) and prediabetes (n = 50) (defined as impaired fasting glucose, impaired glucose tolerance or a combination of both), and were classified into HV, those without neuropathy (PN−) (n = 149) and those with neuropathy (PN+) (n = 130). For the AI-based DLA, a modified residual neural network called ResNet-50 was developed and used to extract features from images and perform classification. The algorithm was tested on 40 participants (15 HV, 13 PN−, 12 PN+). Attribution methods gradient-weighted class activation mapping (Grad-CAM), Guided Grad-CAM and occlusion sensitivity displayed the areas within the image that had the greatest impact on the decision of the algorithm. Results The results were as follows: HV: recall of 1.0 (95% CI 1.0, 1.0), precision of 0.83 (95% CI 0.65, 1.0), F1-score of 0.91 (95% CI 0.79, 1.0); PN−: recall of 0.85 (95% CI 0.62, 1.0), precision of 0.92 (95% CI 0.73, 1.0), F1-score of 0.88 (95% CI 0.71, 1.0); PN+: recall of 0.83 (95% CI 0.58, 1.0), precision of 1.0 (95% CI 1.0, 1.0), F1-score of 0.91 (95% CI 0.74, 1.0). The features displayed by the attribution methods demonstrated more corneal nerves in HV, a reduction in corneal nerves for PN− and an absence of corneal nerves for PN+ images. Conclusions/interpretation We demonstrate promising results in the rapid classification of peripheral neuropathy using a single corneal image. A large-scale multicentre validation study is required to assess the utility of AI-based DLA in screening and diagnostic programmes for diabetic neuropathy. Graphical abstract


Engineering ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 1027-1040 ◽  
Author(s):  
Pieter P. Plehiers ◽  
Steffen H. Symoens ◽  
Ismaël Amghizar ◽  
Guy B. Marin ◽  
Christian V. Stevens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document