scholarly journals Radio Access Evaluation of Commercial 5G Service

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2746
Author(s):  
José Antonio Martínez ◽  
José Ignacio Moreno ◽  
Diego Rivera ◽  
Julio Berrocal

Wireless communication networks are enhancing faster than anyone could imagine. As everybody knows, 5G is the future and the study of it is very valuable nowadays. In this context, this paper provides a characterization of the deployment of a 5G access network by an operator in Spain, identifying its capacity and the actual use to which it is being subjected today. For this, sizing methods and tools will be used to qualify the capacity of the cells currently displayed, determining a better performance than we might initially think. This paper proposes a theoretical model which identifies relevant parameters for cell dimensioning, and determining that an expansion of cell’s capacity will be necessary at a 70% of load. Subsequently, this model is evaluated, analyzing real data via a vendor, showing a high performance, but discovering that some methods used in the current deployment, such as DSS, are, perhaps, not as expected. In addition, when comparing the 5G yield 4G, the power and potential future of the former is apparent.

2008 ◽  
Vol 8 (3) ◽  
pp. 11673-11684 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapor, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show excellent correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements).The correlation of the microwave link measurements to those of the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The RMSE were 20.8% and 33.1% for the northern and central site measurements, respectively.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163034 ◽  
Author(s):  
A. M. Al-Samman ◽  
T. A. Rahman ◽  
M. H. Azmi ◽  
M. N. Hindia ◽  
I. Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document