scholarly journals Crystal Structure Algorithm (CryStAl) Based Selective Harmonic Elimination Modulation in a Cascaded H-Bridge Multilevel Inverter

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3070
Author(s):  
Shoeb Azam Farooqui ◽  
Mohammad Munawar Shees ◽  
Mohammed F. Alsharekh ◽  
Saleh Alyahya ◽  
Rashid Ahmed Khan ◽  
...  

This paper introduces an effective Selective Harmonic Elimination (SHE) modulation technique in a five, seven, and nine-level cascaded H-bridge (CHB) multilevel inverter (MLI). Minimization of the harmonics and device counts is the basis for the ongoing research in the area of MLI. Reduced harmonics and hence the lower Total Harmonic Distortion (THD), improve the output power quality. SHE is a low-frequency modulation scheme to achieve this goal. SHE techniques are used to eliminate the distinct lower-order harmonics by determining the optimum switching angles. These angles are evaluated by solving the non-linear transcendental equations using any optimization technique. For this purpose, the Crystal Structure Algorithm (CryStAl) has been used in this paper. It is a metaheuristic, nature-inspired, and highly efficient optimization technique. CryStAl is a simple and parameter-free algorithm that doesn’t require the determination of any internal parameter during the optimization process. It is based on the concept of crystal structure formation by joining the basis and lattice point. This natural occurrence can be realized in crystalline minerals in their symmetrically organized components: ions, atoms, and molecules. The concept has been utilized to solve non-linear transcendental equations. SIMULINK/MATLAB environment has been used for the simulation. The simulation result shows that the crystal structure algorithm is very effective and excels the other metaheuristic algorithm. Hardware results validate the performance.

2021 ◽  
Vol 14 (1) ◽  
pp. 310
Author(s):  
Rashid Ahmed Khan ◽  
Shoeb Azam Farooqui ◽  
Mohammad Irfan Sarwar ◽  
Seerin Ahmad ◽  
Mohd Tariq ◽  
...  

This paper presents the Archimedes optimization algorithm to eliminate selective harmonics in a cascaded H-bridge (CHB) multilevel inverter (MLI). The foremost objective of the selective harmonic elimination (SHE) is to eliminate lower order harmonics by finding the optimal switching angle combination which minimizes the objective function containing Total Harmonic Distortion (THD) and other specific harmonic terms. Consequently, the THD is also reduced. In this study, a recently proposed metaheuristic technique named the Archimedes optimization algorithm (AOA) is used to determine the optimal angles corresponding to the 5, 7 and 9 level CHB-MLI. AOA involves equations related to a physical law, the Archimedes Principle. It is based on the idea of a buoyant force acting upward on a body or object that is partially or completely submerged in a fluid, and the upward force is related to the weight of the fluid displaced. This optimization technique has been implemented on CHB-MLI to generate various level outputs, simulated on MATLAB™ R2021a version environment software. The simulation results reveal that AOA is a high-performance optimization technique in terms of convergence speed and exploitation-exploration balance and is well-suited to the solution of the SHE problem. Furthermore, the laboratory validated the simulation result on a hardware setup using DSP-TMS320F28379D.


Author(s):  
Mohammed Rasheed ◽  
Moataz M. A. Alakkad ◽  
Rosli Omar ◽  
Marizan Sulaiman ◽  
Wahidah Abd Halim

<p>In converters or multilevel inverters it is very important to ensure that the output of the<br />multilevel inverters waveforms in term of the voltage or current of the waveforms is<br />smooth and without distortion. The artificial neural network (ANN) technique to<br />obtaining proper switching angles sequences for a uniform step asymmetrical modified<br />multilevel inverter by eliminating specified higher-order harmonics while maintaining<br />the required fundamental voltage and current waveform. However, through this paper a<br />modified CHB-MLI are proposed using artificial intelligence optimization technique<br />based on modulation Selective Harmonic Elimination (SHE-PWM). A most powerful<br />modulation technique that used to minimize a harmonic contants during the outout<br />waveform of multilevel inverter is a SHE-PWM method. The proposed a five-level<br />Modified Cascaded H-Bridge Multilevel Inverter (M-CHBMI) with ANN controller to<br />improve the output voltage and current performance and achieve a lower Total<br />Harmonic Distortion (THD). The main aims of this paper cover design, modeling,<br />prediction for real-time generation of optimal switching angles in a single-phase<br />topology of modified five level CHB-MLI. due to the heavy cost of computation to<br />solving transcendental nonlinear equations with specified number, a real-time<br />application of Selective Harmonic Elimination-Pulse Width Modulation (SHE-PWM)<br />technique is limited. SHE equations known as a transcendental nonlinear equation that<br />contain trigonometric functions. The prototype of a 5-level inverter in Digital Signal<br />Processing (DSP) TMS320F2812 reveals that the proposed method is highly efficient<br />for harmonic reduction in modified multilevel inverter.</p>


2021 ◽  
Author(s):  
Baharuddin Ismail ◽  
Muzamir Isa ◽  
M. Z. Aikhsan ◽  
M. N. K. H. Rohani ◽  
C. L. Wooi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document