scholarly journals Unsupervised Anomaly Detection in Printed Circuit Boards through Student–Teacher Feature Pyramid Matching

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3177
Author(s):  
Venkat Anil Adibhatla ◽  
Yu-Chieh Huang ◽  
Ming-Chung Chang ◽  
Hsu-Chi Kuo ◽  
Abhijeet Utekar ◽  
...  

Deep learning methods are currently used in industries to improve the efficiency and quality of the product. Detecting defects on printed circuit boards (PCBs) is a challenging task and is usually solved by automated visual inspection, automated optical inspection, manual inspection, and supervised learning methods, such as you only look once (YOLO) of tiny YOLO, YOLOv2, YOLOv3, YOLOv4, and YOLOv5. Previously described methods for defect detection in PCBs require large numbers of labeled images, which is computationally expensive in training and requires a great deal of human effort to label the data. This paper introduces a new unsupervised learning method for the detection of defects in PCB using student–teacher feature pyramid matching as a pre-trained image classification model used to learn the distribution of images without anomalies. Hence, we extracted the knowledge into a student network which had same architecture as the teacher network. This one-step transfer retains key clues as much as possible. In addition, we incorporated a multi-scale feature matching strategy into the framework. A mixture of multi-level knowledge from the features pyramid passes through a better supervision, known as hierarchical feature alignment, which allows the student network to receive it, thereby allowing for the detection of various sizes of anomalies. A scoring function reflects the probability of the occurrence of anomalies. This framework helped us to achieve accurate anomaly detection. Apart from accuracy, its inference speed also reached around 100 frames per second.

2008 ◽  
Vol 128 (11) ◽  
pp. 657-662 ◽  
Author(s):  
Tsuyoshi Maeno ◽  
Yukihiko Sakurai ◽  
Takanori Unou ◽  
Kouji Ichikawa ◽  
Osamu Fujiwara

2018 ◽  
Vol 23 (2) ◽  
pp. 141-148
Author(s):  
S.Sh. Rekhviashvili ◽  
◽  
M.O. Mamchuev ◽  
V.V. Narozhnov ◽  
M.M. Oshkhunov ◽  
...  

2013 ◽  
Vol 61 (3) ◽  
pp. 731-735
Author(s):  
A.W. Stadler ◽  
Z. Zawiślak ◽  
W. Stęplewski ◽  
A. Dziedzic

Abstract. Noise studies of planar thin-film Ni-P resistors made in/on Printed Circuit Boards, both covered with two different types of cladding or uncladded have been described. The resistors have been made of the resistive-conductive-material (Ohmega-Ply©) of 100 Ώ/sq. Noise of the selected pairs of samples has been measured in the DC resistance bridge with a transformer as the first stage in a signal path. 1/f noise caused by resistance fluctuations has been found to be the main noise component. Parameters describing noise properties of the resistors have been calculated and then compared with the parameters of other previously studied thin- and thick-film resistive materials.


2014 ◽  
Vol 13 (10) ◽  
pp. 2601-2607 ◽  
Author(s):  
Jae-chun Lee ◽  
Manoj Kumar ◽  
Min-Seuk Kim ◽  
Jinki Jeong ◽  
Kyoungkeun Yoo

Author(s):  
Bhanu Sood ◽  
Michael Pecht

Abstract Failures in printed circuit boards account for a significant percentage of field returns in electronic products and systems. Conductive filament formation is an electrochemical process that requires the transport of a metal through or across a nonmetallic medium under the influence of an applied electric field. With the advent of lead-free initiatives, boards are being exposed to higher temperatures during lead-free solder processing. This can weaken the glass-fiber bonding, thus enhancing conductive filament formation. The effect of the inclusion of halogen-free flame retardants on conductive filament formation in printed circuit boards is also not completely understood. Previous studies, along with analysis and examinations conducted on printed circuit boards with failure sites that were due to conductive filament formation, have shown that the conductive path is typically formed along the delaminated fiber glass and epoxy resin interfaces. This paper is a result of a year-long study on the effects of reflow temperatures, halogen-free flame retardants, glass reinforcement weave style, and conductor spacing on times to failure due to conductive filament formation.


Sign in / Sign up

Export Citation Format

Share Document