scholarly journals Systematic Implementation of Multi-Phase Power Supply (Three to Six) Conversion System

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 109 ◽  
Author(s):  
Rashid Al-Ammari ◽  
Atif Iqbal ◽  
Amith Khandakar ◽  
Syed Rahman ◽  
Sanjeevikumar Padmanaban

Multiphase (more than three) power system has gained popularity due to their inherent advantages when compared to three-phase counterpart. Multiphase power supply is extensively used in AC/DC multi-pulse converters, especially supply with multiple of three-phases. AC/DC converter with multi-pulse input is a popular solution to reduce the ripple in the DC output. Single-phase and three-phase transformers and phase transformation from single to multiphase are employed in variable speed drives application to feed the multi-cell H-Bridge converters and multi-pulse AC-DC converters. Six-phase system is extensively discussed in the literature for numerous applications ranging from variable speed drives to multiphase wind energy generation system. This paper shows the systematic phase transformation technique from three-phase to six-phase (both symmetrical and asymmetrical) for both understanding and teaching purposes. Such an approach could help students understand a promising advanced concept in their undergraduate courses. When phase difference between the two consecutive phases of six phases has a phase difference of 60, it is called a symmetrical six-phase system; while an asymmetrical or quasi, six-phase has two set of three-phase with a phase shift of 30 between the two sets. Simulation and experimental results are also presented.

Author(s):  
Davide Cittanti ◽  
Mattia Guacci ◽  
Spasoje Mirić ◽  
Radu Bojoi ◽  
Johann Walter Kolar

Abstract This paper analyzes the operation and characterizes the performance of a three-phase three-level (3-L) Sparse Neutral Point Clamped converter (SNPCC) for industrial variable speed drives (VSDs). The operating principle of the SNPCC, which advantageously employs a lower number of power transistors than a conventional 3-L inverter, is described in detail, focusing on the AC-side differential-mode and common-mode voltage formation and on the DC-side mid-point current generation processes. The degrees of freedom in the SNPCC modulation scheme are defined and several switching sequences are investigated. Afterwards, the stresses on the active and passive components (e.g. semiconductor losses, machine phase current ripple, DC-link capacitor RMS current, etc.) are calculated by analytical and/or numerical means, enabling a straightforward performance comparison among the identified switching sequences. The most suited modulation strategy for VSD applications is then selected and a chip area sizing procedure, aimed at minimizing the total semiconductor chip size, is applied to a 800V 7.5kW three-phase system. The performance limits of the designed SNPCC are evaluated and finally compared to the ones of conventional 2-L and 3-L solutions, highlighting the promising cost/performance trade-off of the analyzed topology.


Author(s):  
R. Batit ◽  
M. Chraygane ◽  
M. Ferfra ◽  
M. Fadel ◽  
A. Dsoul ◽  
...  

This paper treats the modelisation of a new three phase character high voltage supply (HV) for industrial microwave generators with N=2 magnetrons per phase. This alimentation is based on the presentation of an equivalent p circuit model of a newly dimensioned high voltage transformer. Each phase of the three phase system supplies two parallel cell voltage doublers and current stabilizer. Each of these cells in turn supplies one magnetron 800Watts / 2.45GHz. This power supply is a star connection of three identical models of the single-phase power for N=2 magnetrons. The simulation under EMTP (Electro Magnetic Transients Program) in nominal conditions allows concluding that theoretical results are adjacent to the experimental measurements. Furthermore, a failure study of six magnetron of the microwave generator is also processed. The results permit to observe that the interaction between magnetrons dosn’t influence the nominal operation of the system.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Md Tabrez ◽  
Pradip Kumar Sadhu ◽  
Molla Shahadat Hossain Lipu ◽  
Atif Iqbal ◽  
Mohammed Aslam Husain ◽  
...  

Recently, the superiority of multi-phase systems in comparison to three-phase energy systems has been demonstrated with regards to power generation, transmission, distribution, and utilization in particular. Generally, two techniques, specifically semiconductor converter and special transformers (static and passive transformation) have been commonly employed for power generation by utilizing multi-phase systems from the available three-phase power system. The generation of multi-phase power at a fixed frequency by utilizing the static transformation method presents certain advantages compared to semiconductor converters such as reliability, cost-effectiveness, efficiency, and lower total harmonics distortion (THD). Multi-phase transformers are essential to evaluate the parameters of a multi-phase motor, as they require a multi-phase signal that is pure sine wave in nature. However, multi-phase transformers are not suitable for variable frequency applications. Moreover, they have shortcomings with regard to impedance mismatching, the unequal number of turns which lead to inaccurate results in per phase equivalent circuits, which results in an imbalance output in phase voltages and currents. Therefore, this paper aims to investigate multi-phase power transformation from a three-phase system and examine the different static multi-phase transformation techniques. In line with this matter, this study outlines various theories and configurations of transformers, including three-phase to five-, seven-, eleven-, and thirteen-phase transformers. Moreover, the review discusses impedance mismatching, voltage unbalance, and per phase equivalent circuit modeling and fault analysis in multi-phase systems. Moreover, various artificial intelligence-based optimization techniques such as particle swarm optimization (PSO) and the genetic algorithm (GA) are explored to address various existing issues. Finally, the review delivers effective future suggestions that would serve as valuable opportunities, guidelines, and directions for power engineers, industries, and decision-makers to further research on multi-phase transformer improvements towards sustainable operation and management.


2014 ◽  
Vol 551 ◽  
pp. 562-568
Author(s):  
Guang Quan He ◽  
Wen Rui Guo ◽  
Yong Qiang Zhu ◽  
Ya Feng Wen

The paper focuses on the review of methods of one-phase to three-phase transformation. Analysis of the demand of one-phase/three phase transformation is conducted. L-C splitting circuit, one-phase to three-phase transformation based on balance transformer, and one-phase to three-phase converter are three common methods of transformation, of which principle analysis and comparison of advantages and disadvantages have been conducted. This paper also discusses problems underlying the existing methods and proposes the possible future development.


Author(s):  
Syed M. Islam

This paper will present a review of characteristic harmonics in both single phase and three phase drive front end rectifiers, discuss recent research findings in identifying sources and production of non-characteristic harmonics and amplification of harmonic levels when the front end rectifiers are fed from non-ideal supply conditions. Significant amount of triplens may be generated due to unbalances in utility supply voltage wave form and anticipated harmonic levels may vary widely. The paper will also discuss international harmonic standards such as the AS 2279, IEEE 519, and IEC 61000 series applicable to rectifier loads. Finally, the paper will present techniques to reduce harmonic levels by mixing of single phase and three phase non-linear loads resulting from mutual cancellations.  


Sign in / Sign up

Export Citation Format

Share Document