scholarly journals Adaptive Power Allocation Scheme for Mobile NOMA Visible Light Communication System

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 381 ◽  
Author(s):  
Zanyang Dong ◽  
Tao Shang ◽  
Qian Li ◽  
Tang Tang

Recently, due to its higher spectral efficiency and enhanced user experience, non-orthogonal multiple access (NOMA) has been widely studied in visible light communication (VLC) systems. As a main concern in NOMA-VLC systems, the power allocation scheme greatly affects the tradeoff between the total achievable data rate and user fairness. In this context, our main aim in this work was to find a more balanced power allocation scheme. To this end, an adaptive power allocation scheme based on multi-attribute decision making (MADM), which flexibly chooses between conventional power allocation or inverse power allocation (IPA) and the optimal power allocation factor, has been proposed. The concept of IPA is put forward for the first time and proves to be beneficial to achieving a higher total achievable data rate at the cost of user fairness. Moreover, considering users’ mobility along certain trajectories, we derived a fitting model of the optimal power allocation factor. The feasibility of the proposed adaptive scheme was verified through simulation and the fitting model was approximated to be the sum of three Gaussian functions.

2021 ◽  
Vol 48 (7) ◽  
pp. 0706002
Author(s):  
郝少伟 Hao Shaowei ◽  
李勇军 Li Yongjun ◽  
赵尚弘 Zhao Shanghong ◽  
宋鑫康 Song Xinkang

2020 ◽  
Vol 12 (10) ◽  
pp. 175
Author(s):  
Xin Song ◽  
Lin Xia ◽  
Siyang Xu ◽  
Yue Wang

In this paper, the secure communication based on the full-duplex (FD) device-to-device (D2D) in cellular networks is proposed. For the proposed scheme, the novel model is established, in which a D2D user is played as a relay operating in FD mode to assist in the secure transmission of uplink information. Considering that the D2D user as a relay is untrusted, D2D link rate maximization is formulated with the constraint of secrecy rate, which ensures the security of uplink cellular networks. To cope with the optimization problem, the optimal power allocation factors of the cellular user (CU) and the D2D user are jointly optimized. Firstly, by using the monotonicity of the objective function, the optimal solution of the power allocation factor at the D2D user can be obtained. Subsequently, the closed-form expression of the optimal power allocation factor at the CU is derived and verified that the solution is the global minimum point. Simulation results verify that the proposed scheme has better output performance than the conventional scheme.


2014 ◽  
Vol 986-987 ◽  
pp. 2041-2047
Author(s):  
Ren Gang Yuan ◽  
Li Li Chu ◽  
Chuang Li ◽  
Ling Li Cao

In this letter, an optimal power allocation in the two-way relay channel of four transmission nodes employing the physical-layer network coding (PNC) protocol is proposed to improve the network sum-rate of the two-way relay system. The optimal power allocation is obtained by maximizing the network sum-rate of the PNC protocol under a sum-power constraint in a Rayleigh fading channel environment. Analytical and simulation results show that the proposed power allocation can improve the network sum-rate. Furthermore, compared with the equal power allocation scheme, the proposed power allocation scheme can achieve much higher network sum-rate performance.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 137608-137619 ◽  
Author(s):  
Jiancheng Zhang ◽  
Xinsheng Wang ◽  
Lingyu Ma

2019 ◽  
Vol 9 (2) ◽  
pp. 220 ◽  
Author(s):  
Zhen-Yu Wang ◽  
Hong-Yi Yu ◽  
Da-Ming Wang

Non-orthogonal multiple access (NOMA) can be an effective solution to the limited bandwidth of light emitting diodes for visible light communication (VLC) systems to support multiuser communication. The current available works for NOMA VLC systems mainly concentrate on downlinks and the existing power allocation algorithms mainly focus on the channel state information and ignore the influence of transmitted signals. In this paper, we propose a channel and bit adaptive power control strategy for uplink NOMA VLC systems by jointly considering the channel state information and the transmission bit rate. Under this adaptive power control strategy, it is proved that the received signal at the photodiode (PD) receiver constitutes a sizeable pulse amplitude modulation constellation and low-complexity maximum likelihood detection is admitted. The simulation results indicate that our proposed adaptive power control strategy outperforms the gain ratio power allocation scheme, fixed power allocation scheme, and time division multiple access scheme.


Sign in / Sign up

Export Citation Format

Share Document