scholarly journals Localization and Frequency Identification of Large-Range Wide-Band Electromagnetic Interference Sources in Electromagnetic Imaging System

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 499 ◽  
Author(s):  
Shuguo Xie ◽  
Tianheng Wang ◽  
Xuchun Hao ◽  
Meiling Yang ◽  
Yanju Zhu ◽  
...  

The identification and localization of large-range, wide-band electromagnetic interference (EMI) sources have always been both costly and time-consuming. The measurements at different times and places are often required before a typical system can locate a target. In this paper, we proposed a 2D electromagnetic imaging system to localize interference sources and identify the EMI frequency in real time. In this system, an offset paraboloid with a diameter of three meters is designed for large-range EMI imaging, while a multi-channel digital signal acquisition system is developed for wide-band EMI localization. The located interference source is segmented by the maximum entropy method based on particle swarm optimization, and the modified generalized regression neural network (MGRNN) is applied to identify the EMI frequency effectively by excluding misleading effects of outliers. The experiment which has been completed on our dataset indicates that our approach not only increases accuracy by 5% compared with the standard generalized regression neural network approaches for identification, but also exerts a large-range wide-band localization of the EMI source detection method.

2015 ◽  
Vol 793 ◽  
pp. 483-488
Author(s):  
N. Aminudin ◽  
Marayati Marsadek ◽  
N.M. Ramli ◽  
T.K.A. Rahman ◽  
N.M.M. Razali ◽  
...  

The computation of security risk index in identifying the system’s condition is one of the major concerns in power system analysis. Traditional method of this assessment is highly time consuming and infeasible for direct on-line implementation. Thus, this paper presents the application of Multi-Layer Feed Forward Network (MLFFN) to perform the prediction of voltage collapse risk index due to the line outage occurrence. The proposed ANN model consider load at the load buses as well as weather condition at the transmission lines as the input. In realizing the effectiveness of the proposed method, the results are compared with Generalized Regression Neural Network (GRNN) method. The results revealed that the MLFFN method shows a significant improvement over GRNN performance in terms of least error produced.


Author(s):  
A. G. Buevich ◽  
I. E. Subbotina ◽  
A. V. Shichkin ◽  
A. P. Sergeev ◽  
E. M. Baglaeva

Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.


Sign in / Sign up

Export Citation Format

Share Document