scholarly journals System Log Detection Model Based on Conformal Prediction

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 232 ◽  
Author(s):  
Yitong Ren ◽  
Zhaojun Gu ◽  
Zhi Wang ◽  
Zhihong Tian ◽  
Chunbo Liu ◽  
...  

With the rapid development of the Internet of Things, the combination of the Internet of Things with machine learning, Hadoop and other fields are current development trends. Hadoop Distributed File System (HDFS) is one of the core components of Hadoop, which is used to process files that are divided into data blocks distributed in the cluster. Once the distributed log data are abnormal, it will cause serious losses. When using machine learning algorithms for system log anomaly detection, the output of threshold-based classification models are only normal or abnormal simple predictions. This paper used the statistical learning method of conformity measure to calculate the similarity between test data and past experience. Compared with detection methods based on static threshold, the statistical learning method of the conformity measure can dynamically adapt to the changing log data. By adjusting the maximum fault tolerance, a system administrator can better manage and monitor the system logs. In addition, the computational efficiency of the statistical learning method for conformity measurement was improved. This paper implemented an intranet anomaly detection model based on log analysis, and conducted trial detection on HDFS data sets quickly and efficiently.

Author(s):  
Saad Hikmat Haji ◽  
Siddeeq Y. Ameen

The Internet of Things (IoT) is one of today's most rapidly growing technologies. It is a technology that allows billions of smart devices or objects known as "Things" to collect different types of data about themselves and their surroundings using various sensors. They may then share it with the authorized parties for various purposes, including controlling and monitoring industrial services or increasing business services or functions. However, the Internet of Things currently faces more security threats than ever before. Machine Learning (ML) has observed a critical technological breakthrough, which has opened several new research avenues to solve current and future IoT challenges. However, Machine Learning is a powerful technology to identify threats and suspected activities in intelligent devices and networks. In this paper, various ML algorithms have been compared in terms of attack detection and anomaly detection, following a thorough literature review on Machine Learning methods and the significance of IoT security in the context of various types of potential attacks. Furthermore, possible ML-based IoT protection technologies have been introduced.


Author(s):  
Phidahunlang Chyne ◽  
Parag Chatterjee ◽  
Sugata Sanyal ◽  
Debdatta Kandar

Rapid advancements in hardware programming and communication innovations have encouraged the development of internet-associated sensory devices that give perceptions and information measurements from the physical world. According to the internet of things (IoT) analytics, more than 100 IoT devices across the world connect to the internet every second, which in the coming years will sharply increase the number of IoT devices by billions. This number of IoT devices incorporates new dynamic associations and does not totally replace the devices that were purchased before yet are not utilized any longer. As an increasing number of IoT devices advance into the world, conveyed in uncontrolled, complex, and frequently hostile conditions, securing IoT frameworks displays various challenges. As per the Eclipse IoT Working Group's 2017 IoT engineer overview, security is the top worry for IoT designers. To approach the challenges in securing IoT devices, the authors propose using unsupervised machine learning model at the network/transport level for anomaly detection.


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


2020 ◽  
pp. 1-7
Author(s):  
Yufei An ◽  
Jianqiang Li ◽  
F. Richard Yu ◽  
Jianyong Chen ◽  
Victor C. M. Leung

2021 ◽  
Vol 19 (3) ◽  
pp. 163
Author(s):  
Dušan Bogićević

Edge data processing represents the new evolution of the Internet and Cloud computing. Its application to the Internet of Things (IoT) is a step towards faster processing of information from sensors for better performance. In automated systems, we have a large number of sensors, whose information needs to be processed in the shortest possible time and acted upon. The paper describes the possibility of applying Artificial Intelligence on Edge devices using the example of finding a parking space for a vehicle, and directing it based on the segment the vehicle belongs to. Algorithm of Machine Learning is used for vehicle classification, which is based on vehicle dimensions.


Sign in / Sign up

Export Citation Format

Share Document