scholarly journals On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1352 ◽  
Author(s):  
Oscar Danilo Montoya ◽  
Federico Martin Serra ◽  
Cristian Hernan De Angelo

This research deals with the efficiency comparison between AC and DC distribution networks that can provide electricity to rural and urban areas from the point of view of grid energy losses and greenhouse gas emissions impact. Configurations for medium- and low-voltage networks are analyzed via optimal power flow analysis by adding voltage regulation and devices capabilities sources in the mathematical formulation. Renewable energy resources such as wind and photovoltaic are considered using typical daily generation curves. Batteries are formulated with a linear representation taking into account operative bounds suggested by manufacturers. Numerical results in two electrical networks with 0.24 kV and 12.66 kV (with radial and meshed configurations) are performed with constant power loads at all the nodes. These simulations confirm that power distribution with DC technology is more efficient regarding energy losses, voltage profiles and greenhouse emissions than its AC counterpart. All the numerical results are tested in the General Algebraic Modeling System widely known as GAMS.

2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Raton Kumar Nondy ◽  
Md. Abul Bashar ◽  
Prema Nondy ◽  
M. Hazrat Ali

The conventional power frequency (50 or 60 Hz) transformers are economical, highly reliable and quite efficient but they suffer with certain drawbacks like sensitive to harmonics, voltage drop under load, no protection from system disruptions and overloads, poor performance under dc offset load unbalances and no scope to improve power factor. These transformers with copper wound wires on iron cores are unable to respond to control signals as power generations become distributed and intermittent. So, the need of electronic based regulated power supply with software based remote intelligence has become essential. Also, to easily connect the new energy sources to the grid and to improve the power quality by harmonic filtering, voltage sag correction and highly dynamic control of the power flow, a new type of transformer based on power electronics, known as SST has been introduced. The SST realizes voltage transformation, galvanic isolation, power quality improvements such as instantaneous voltage regulation, voltage sag compensation and power factor correction. It is a collection of high-powered semiconductor components, high frequency power transformer and control circuitry which is used to provide a high level of flexible control to power distribution networks. The SST is a high frequency switched Power Electronic Devices (PEDs) based transformer with high controllability that enables flexible connectivity between existing medium voltage power distribution network, low voltage AC residential system and envisioned DC residential system. In this paper a systematic constructional detail of a SST with a power rating of 2 kVA, operating frequency of 20 kHz and voltage rating of 600/60 V as a scaled-down prototype used for power converter topologies is presented. The design is simple and it avoids the difficulty of choosing massive amounts of empirical parameters.


Vestnik MEI ◽  
2021 ◽  
pp. 27-36
Author(s):  
Mikhail G. Astashev ◽  
◽  
Artem S. Vanin ◽  
Vladimir M. Korolev ◽  
Dmitriy I. Panfilov ◽  
...  

The article addresses the problem of ensuring permissible voltage levels in distribution electrical networks of various types: distribution networks of large cities, regional distribution electrical networks, and distribution electrical networks containing renewable energy sources. The most typical factors causing the voltage to go beyond the permissible limits specified by the relevant regulatory documents are pointed out. The negative factors conducive to the voltage at the consumer end deviating from the permissible limits, including a long length of network lines, high network load, low controllability of the network, load schedule nonuniformity, and poor observability of the network, are analyzed. The existing principles of voltage control in electrical distribution networks, namely, automatic and seasonal regulation, are studied. A distribution electrical network test model representing a real network fragment is developed. The model operation modes have been verified based on the data of measurements carried out in the original distribution electrical network. The voltage distributions in a medium voltage network during its operation under the conditions of the highest and lowest loads are demonstrated. It is shown, on the test model example, how the network voltage can be controlled by automatically regulating the voltage at the power supply center and selecting a fixed position of the NLTC at 10/0.4 kV transformer substations. It is shown that the use of power transformer OLTCs does not ensure sufficient means for adequately controlling the voltage in networks containing long power lines and featuring highly nonuniform seasonal and daily load schedules. The technical efficiency and economic feasibility of using automatic voltage regulation devices on 10/0.4 kV transformers for local voltage control are analyzed. The economic efficiency of applying automatic voltage regulation devices at 6--10/0.4 kV substations was evaluated in comparison with other means for improving the power distribution network voltage quality by upgrading the 10 kV feeder lines or installing a voltage booster at the inlet to the problematic 10 kV network section. The application field of automatic voltage regulators in the form of semiconductor devices for regulating the transformer output voltage at distribution transformer substations is shown.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 178-184
Author(s):  
Alexander Molina ◽  
Oscar Danilo Montoya ◽  
Walter Gil-González

This paper addresses the optimal location and sizing of photovoltaic (PV) sources in isolated direct current (DC) electrical networks, considering time-varying load and renewable generation curves. The mathematical formulation of this problem corresponds to mixed-integer nonlinear programming (MINLP), which is reformulated via mixed-integer convex optimization: This ensures the global optimum solving the resulting optimization model via branch & bound and interior-point methods. The main idea of including PV sources in the DC grid is to minimize the daily energy losses and greenhouse emissions produced by diesel generators in isolated areas. The GAMS package is employed to solve the MINLP model, using mixed and integer variables; also, the CVX and MOSEK solvers are used to obtain solutions from the proposed mixed-integer convex model in the MATLAB. Numerical results demonstrate important reductions in the daily energy losses and the harmful gas emissions when PV sources are optimally integrated into DC grid.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1866
Author(s):  
Zahid Javid ◽  
Ulas Karaagac ◽  
Ilhan Kocar ◽  
Ka Wing Chan

There is an increasing interest in low voltage direct current (LVDC) distribution grids due to advancements in power electronics enabling efficient and economical electrical networks in the DC paradigm. Power flow equations in LVDC grids are non-linear and non-convex due to the presence of constant power nodes. Depending on the implementation, power flow equations may lead to more than one solution and unrealistic solutions; therefore, the uniqueness of the solution should not be taken for granted. This paper proposes a new power flow solver based on a graph theory for LVDC grids having radial or meshed configurations. The solver provides a unique solution. Two test feeders composed of 33 nodes and 69 nodes are considered to validate the effectiveness of the proposed method. The proposed method is compared with a fixed-point methodology called direct load flow (DLF) having a mathematical formulation equivalent to a backward forward sweep (BFS) class of solvers in the case of radial distribution networks but that can handle meshed networks more easily thanks to the use of connectivity matrices. In addition, the convergence and uniqueness of the solution is demonstrated using a Banach fixed-point theorem. The performance of the proposed method is tested for different loading conditions. The results show that the proposed method is robust and has fast convergence characteristics even with high loading conditions. All simulations are carried out in MATLAB 2020b software.


Author(s):  
A. V. Lykin ◽  
E. A. Utkin

The article considers the feasibility of changing the structure of a distribution electrical network by transferring points of electricity transformation as close to consumers as possible. This approach is based on installation of pole-mounted transformer substations (PMTS) near consumer groups and changes the topology of the electrical network. At the same time, for groups of consumers, the configuration of sections of the low-voltage network, including service drops, changes. The efficiency of approaching transformer substations to consumers was estimated by the reduction in electrical energy losses due to the expansion of the high-voltage network. The calculation of electrical losses was carried out according to twenty-four hour consumer demand curve. To estimate the power losses in each section of the electrical network of high and low voltage, the calculated expressions were obtained. For the considered example, the electrical energy losses in the whole network with a modified topology is reduced by about two times, while in a high-voltage network with the same transmitted power, the losses are reduced to a practically insignificant level, and in installed PMTS transformers they increase mainly due to the rise in total idle losses. The payback period of additional capital investments in option with modified topology will be significantly greater if payback is assessed only by saving losses cost. Consequently, the determination of the feasibility of applying this approach should be carried out taking into account such factors as increasing the reliability of electricity supply, improving the quality of electricity, and increasing the power transmission capacity of the main part of electrical network.


Electrician ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Osea Zebua ◽  
Noer Soedjarwanto ◽  
Jemi Anggara

Intisari — Stabilitas tegangan telah menjadi perhatian yang penting dalam operasi jaringan distribusi tenaga listrik. Ketidakstabilan tegangan dapat menyebabkan kerusakan pada peralatan-peralatan listrik bila terjadi dalam waktu yang lama. Makalah ini bertujuan untuk merancang dan membuat peralatan deteksi stabilitas tegangan jangka panjang pada jaringan tegangan rendah. Sensor tegangan dan sensor arus digunakan untuk memperoleh data tegangan dan arus. Mikrokontroler Arduino digunakan untuk memproses perhitungan deteksi stabilitas tegangan jangka panjang dari data tegangan yang diperoleh dari sensor. Hasil deteksi kondisi stabilitas tegangan ditampilkan dengan indikator lampu led. Hasil pengujian pada jaringan distribusi tegangan rendah tiga fasa menunjukkan bahwa peralatan dapat mendeteksi gangguan stabilitas tegangan jangka panjang secara online dan dinamis.Kata kunci — Deteksi, stabilitas tegangan jangka panjang, jaringan distribusi tegangan rendah. Abstract — Voltage stability has become important concern in the operation of electric power distribution networks. Voltage instability can cause damage to electrical equipments if it occurs for a long time. This paper aims to design and build long-term voltage stability detection equipment on low-voltage network. Voltage sensors and current sensors are used to obtain voltage and current data. The Arduino microcontroller is used to process calculation of long-term voltage stability detection from data obtained from the sensors. The results of detection of voltage stability conditions are displayed with the LED indicators. Test result on three-phase low-voltage distribution network shows that equipment can detect long–term voltage stability disturbance online and dynamically.Keywords— Detection, long-term voltage stability, low-voltage distribution network.


Sign in / Sign up

Export Citation Format

Share Document