scholarly journals A New Approach to Determining Liquid Concentration Using Multiband Annular Ring Microwave Sensor and Polarity Correlator

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1616
Author(s):  
Waleed Sethi ◽  
Ahmed Ibrahim ◽  
Khaled Issa ◽  
Ali Albishi ◽  
Saleh Alshebeili

This article presents a new approach to determining liquid concentration using a new microwave sensor and polarity correlator. The sensor design incorporates an annular ring resonator having inside three parallel lines, a trapezoid ground plane and a co-planar waveguide (CPW) tapered feeder, which altogether achieve multiple frequency bands. Multiple bands of interest are obtained at the lower end of the microwave spectrum, i.e., from 1–6 GHz, as this region is widely accepted in analyzing various liquid samples. The sensor size is 71 × 40 × 1.6 mm3 with material selection based on an economically available FR4 substrate. The sensor is realized and experimentally validated for its sensitivity by utilizing in-lab prepared aqueous solution samples. Further, liquid concentration is determined by adopting a polarity correlator, which is applied to the sensor’s responses obtained at different values.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2016 ◽  
Vol 58 (9) ◽  
pp. 2106-2110 ◽  
Author(s):  
Rammah A. Alahnomi ◽  
Z. Zakaria ◽  
E. Ruslan ◽  
Amyrul Azuan Mohd Bahar. ◽  
S. R. Ab Rashid

Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


Author(s):  
Shaodan Ma ◽  
Lanlan He ◽  
Yik-Chung Wu ◽  
Tung-Sang Ng

With the properties of interference avoidance and the robustness against multipath channels, Orthogonal Frequency Division Multiple Access (OFDMA) has been considered a promising solution to the interference control problem in femtocells. As a multi-carrier transmission technique, OFDMA, however, is highly vulnerable to the Carrier Frequency Offset (CFO). This chapter discusses the challenges of multiple frequency offsets compensation in OFDMA femtocells. A number of multiple frequency offsets compensation algorithms are reviewed and their complexities are discussed in detail. A new approach that exploits the redundancy offered by cyclic prefix is then introduced to enhance the compensation performance. Finally, numerical results are presented to illustrate the performance of different compensation algorithms.


2015 ◽  
Vol 8 (7) ◽  
pp. 1045-1050 ◽  
Author(s):  
Indhumathi Kulandhaisamy ◽  
Dinesh Babu Rajendran ◽  
Malathi Kanagasabai ◽  
Balaji Moorthy ◽  
Jithila V. George ◽  
...  

Phase shifters are indispensable microwave components. In this paper, a dual-frequency, passive, analog, and reciprocal phase shifter is proposed, deploying the phase-delay characteristics of complementary split-ring resonator (CSRR). A transmission line is loaded with a pair of CSRR in the ground plane and the phase variations are compared with an ideal transmission line. The proposed phase shifter operates in the industrial, scientific and medical (ISM) and wireless local area network (WLAN) bands, providing a phase of 180° at 2.4 GHz and 90° at 5.4 GHz for beam steering applications.


Sign in / Sign up

Export Citation Format

Share Document