A Microwave Sensor for Leaf Moisture Detection Based on Split-Ring Resonator

Author(s):  
YuHeng Yan ◽  
XianQi Lin ◽  
Zhe Chen ◽  
Yang Cai ◽  
Zhi Chen
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2016 ◽  
Vol 58 (9) ◽  
pp. 2106-2110 ◽  
Author(s):  
Rammah A. Alahnomi ◽  
Z. Zakaria ◽  
E. Ruslan ◽  
Amyrul Azuan Mohd Bahar. ◽  
S. R. Ab Rashid

2021 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Faezeh Shanehsazzadeh ◽  
Nafise Azizi ◽  
Hosna Kazerooni Haghighat ◽  
Fatemeh Mashayekhi ◽  
Mehdi Fardmanesh

A novel, cost-effective, flexible microwave sensor is proposed to facilitate point-of-care testing (POCT) methods for medical diagnosis. The sensor is based on the complementary split-ring resonator (CSRR) to accurately measure the permittivity of biomaterials over a wide range of frequencies. This ability can be used to characterize various materials under test (MUT) such as blood, saliva, tissue samples, etc. The flexibility of the proposed sensor means that it can be used when the accessibility of the sample has technical difficulties, such as on curved surfaces. Firstly, the optimized structure and coupling to the readout transmission line are evaluated using finite element method (FEM) simulations. Then, the prototype of the optimized structure is fabricated on a thin polydimethylsiloxane (PDMS) substrate as a biocompatible economical polymer, and aluminium is carefully chosen for the fabrication of CSRR and readout parts. The proposed flexible sensor is tested and compared to conventional rigid CSRR sensors. The proposed structure withstood the different bending positions well, and also showed an improvement in the results for curved MUT.


Author(s):  
Praveen Kumar Rao ◽  
Ashish Ranjan Yadav ◽  
Rajan Mishra

Abstract The artificial magnetic conductor (AMC) formed by meta-materials is used in the micro-strip antenna design for microwave sensor applications. The AMC structures with two uniplanar layers, which include modified square split-ring resonator cells, are repeated and formed into a 5 × 3 array. The antenna's operational bandwidth result is significant, and it is in the range of 2.8–10 GHz with a maximum gain of 11.8 dB. Cancer or malignant tumor cells have entirely different electrical properties than healthy breast tissue. Principal component analysis and specific absorption rate (SAR) are used as a parameter to identify cancer or malignant tumor cells in the breast. The SAR values have been calculated for each layer of the 3D breast model. The results show a difference in the SAR values based on the size and tumors' locations.


Sign in / Sign up

Export Citation Format

Share Document