scholarly journals Optimizing Computer Networks Communication with the Band Collocation Problem: A Variable Neighborhood Search Approach

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1860
Author(s):  
Isaac Lozano-Osorio ◽  
Jesus Sanchez-Oro ◽  
Miguel Ángel Rodriguez-Garcia ◽  
Abraham Duarte

The Band Collocation Problem appears in the context of problems for optimizing telecommunication networks with the aim of solving some concerns related to the original Bandpass Problem and to present a more realistic approximation to be solved. This problem is interesting to optimize the cost of networks with several devices connected, such as networks with several embedded systems transmitting information among them. Despite the real-world applications of this problem, it has been mostly ignored from a heuristic point of view, with the Simulated Annealing algorithm being the best method found in the literature. In this work, three Variable Neighborhood Search (VNS) variants are presented, as well as three neighborhood structures and a novel optimization based on Least Recently Used cache, which allows the algorithm to perform an efficient evaluation of the objective function. The extensive experimental results section shows the superiority of the proposal with respect to the best previous method found in the state-of-the-art, emerging VNS as the most competitive method to deal with the Band Collocation Problem.

2020 ◽  
Vol 32 (3) ◽  
pp. 730-746
Author(s):  
Vladyslav Sokol ◽  
Ante Ćustić ◽  
Abraham P. Punnen ◽  
Binay Bhattacharya

The bilinear assignment problem (BAP) is a generalization of the well-known quadratic assignment problem. In this paper, we study the problem from the computational analysis point of view. Several classes of neighborhood structures are introduced for the problem along with some theoretical analysis. These neighborhoods are then explored within a local search and variable neighborhood search frameworks with multistart to generate robust heuristic algorithms. In addition, we present several very fast construction heuristics. Our systematic experimental analysis disclosed some interesting properties of the BAP, different from those of comparable models. We have also introduced benchmark test instances that can be used for future experiments on exact and heuristic algorithms for the problem.


2017 ◽  
Vol 6 (1) ◽  
pp. 49
Author(s):  
Titi Iswari

<p><em>Determining the vehicle routing is one of the important components in existing logistics systems. It is because the vehicle route problem has some effect on transportation costs and time required in the logistics system. In determining the vehicle routes, there are some restrictions faced, such as the maximum capacity of the vehicle and a time limit in which depot or customer has a limited or spesific opening hours (time windows). This problem referred to Vehicle Routing Problem with Time Windows (VRPTW). To solve the VRPTW, this study developed a meta-heuristic method called Hybrid Restart Simulated Annealing with Variable Neighborhood Search (HRSA-VNS). HRSA-VNS algorithm is a modification of Simulated Annealing algorithm by adding a restart strategy and using the VNS algorithm scheme in the stage of finding neighborhood solutions (neighborhood search phase). Testing the performance of HRSA-VNS algorithm is done by comparing the results of the algorithm to the Best Known Solution (BKS) and the usual SA algorithm without modification. From the results obtained, it is known that the algorithm perform well enough in resolving the VRPTW case with the average differences are -2.0% with BKS from Solomon website, 1.83% with BKS from Alvarenga, and -2.2% with usual SA algorithm without any modifications.</em></p><p><em>Keywords : vehicle routing problem, time windows, simulated annealing, VNS, restart</em></p>


Author(s):  
Alexandre Frias Faria ◽  
Sérgio Ricardo de Souza ◽  
Marcone Jamilson Freitas Souza ◽  
Carlos Alexandre Silva ◽  
Vitor Nazário Coelho

Sign in / Sign up

Export Citation Format

Share Document