scholarly journals Small-Footprint Wake Up Word Recognition in Noisy Environments Employing Competing-Words-Based Feature

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2202
Author(s):  
Ki-Mu Yoon ◽  
Wooil Kim

This paper proposes a small-footprint wake-up-word (WUW) recognition system for real noisy environments by employing the competing-words-based feature. Competing-words-based features are generated using a ResNet-based deep neural network with small parameters using the competing-words dataset. The competing-words dataset consists of the most acoustically similar and dissimilar words to the WUW used for our system. The obtained features are used as input to the classification network, which is developed using the convolutional neural network (CNN) model. To obtain sufficient data for training, data augmentation is performed by using a room impulse response filter and adding sound signals of various television shows as background noise, which simulates an actual living room environment. The experimental results demonstrate that the proposed WUW recognition system outperforms the baselines that employ CNN and ResNet models. The proposed system shows 1.31% in equal error rate and 1.40% false rejection rate at a 1.0% false alarm rate, which are 29.57% and 50.00% relative improvements compared to the ResNet system, respectively. The number of parameters used for the proposed system is reduced by 83.53% compared to the ResNet system. These results prove that the proposed system with the competing-words-based feature is highly effective at improving WUW recognition performance in noisy environments with a smaller footprint.

This research is aimed to achieve high-precision accuracy and for face recognition system. Convolution Neural Network is one of the Deep Learning approaches and has demonstrated excellent performance in many fields, including image recognition of a large amount of training data (such as ImageNet). In fact, hardware limitations and insufficient training data-sets are the challenges of getting high performance. Therefore, in this work the Deep Transfer Learning method using AlexNet pre-trained CNN is proposed to improve the performance of the face-recognition system even for a smaller number of images. The transfer learning method is used to fine-tuning on the last layer of AlexNet CNN model for new classification tasks. The data augmentation (DA) technique also proposed to minimize the over-fitting problem during Deep transfer learning training and to improve accuracy. The results proved the improvement in over-fitting and in performance after using the data augmentation technique. All the experiments were tested on UTeMFD, GTFD, and CASIA-Face V5 small data-sets. As a result, the proposed system achieved a high accuracy as 100% on UTeMFD, 96.67% on GTFD, and 95.60% on CASIA-Face V5 in less than 0.05 seconds of recognition time.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Michał Klimont ◽  
Mateusz Flieger ◽  
Jacek Rzeszutek ◽  
Joanna Stachera ◽  
Aleksandra Zakrzewska ◽  
...  

Hydrocephalus is a common neurological condition that can have traumatic ramifications and can be lethal without treatment. Nowadays, during therapy radiologists have to spend a vast amount of time assessing the volume of cerebrospinal fluid (CSF) by manual segmentation on Computed Tomography (CT) images. Further, some of the segmentations are prone to radiologist bias and high intraobserver variability. To improve this, researchers are exploring methods to automate the process, which would enable faster and more unbiased results. In this study, we propose the application of U-Net convolutional neural network in order to automatically segment CT brain scans for location of CSF. U-Net is a neural network that has proven to be successful for various interdisciplinary segmentation tasks. We optimised training using state of the art methods, including “1cycle” learning rate policy, transfer learning, generalized dice loss function, mixed float precision, self-attention, and data augmentation. Even though the study was performed using a limited amount of data (80 CT images), our experiment has shown near human-level performance. We managed to achieve a 0.917 mean dice score with 0.0352 standard deviation on cross validation across the training data and a 0.9506 mean dice score on a separate test set. To our knowledge, these results are better than any known method for CSF segmentation in hydrocephalic patients, and thus, it is promising for potential practical applications.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


2021 ◽  
Vol 11 (18) ◽  
pp. 8420
Author(s):  
Hemant Kumar Kathania ◽  
Sudarsana Reddy Kadiri ◽  
Paavo Alku ◽  
Mikko Kurimo

Current ASR systems show poor performance in recognition of children’s speech in noisy environments because recognizers are typically trained with clean adults’ speech and therefore there are two mismatches between training and testing phases (i.e., clean speech in training vs. noisy speech in testing and adult speech in training vs. child speech in testing). This article studies methods to tackle the effects of these two mismatches in recognition of noisy children’s speech by investigating two techniques: data augmentation and time-scale modification. In the former, clean training data of adult speakers are corrupted with additive noise in order to obtain training data that better correspond to the noisy testing conditions. In the latter, the fundamental frequency (F0) and speaking rate of children’s speech are modified in the testing phase in order to reduce differences in the prosodic characteristics between the testing data of child speakers and the training data of adult speakers. A standard ASR system based on DNN–HMM was built and the effects of data augmentation, F0 modification, and speaking rate modification on word error rate (WER) were evaluated first separately and then by combining all three techniques. The experiments were conducted using children’s speech corrupted with additive noise of four different noise types in four different signal-to-noise (SNR) categories. The results show that the combination of all three techniques yielded the best ASR performance. As an example, the WER value averaged over all four noise types in the SNR category of 5 dB dropped from 32.30% to 12.09% when the baseline system, in which no data augmentation or time-scale modification were used, was replaced with a recognizer that was built using a combination of all three techniques. In summary, in recognizing noisy children’s speech with ASR systems trained with clean adult speech, considerable improvements in the recognition performance can be achieved by combining data augmentation based on noise addition in the system training phase and time-scale modification based on modifying F0 and speaking rate of children’s speech in the testing phase.


Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2020 ◽  
Vol 10 (7) ◽  
pp. 1494-1505
Author(s):  
Hyo-Hun Kim ◽  
Byung-Woo Hong

In this work, we present an image segmentation algorithm based on the convolutional neural network framework where the scale space theory is incorporated in the course of training procedure. The construction of data augmentation is designed to apply the scale space to the training data in order to effectively deal with the variability of regions of interest in geometry and appearance such as shape and contrast. The proposed data augmentation algorithm via scale space is aimed to improve invariant features with respect to both geometry and appearance by taking into consideration of their diffusion process. We develop a segmentation algorithm based on the convolutional neural network framework where the network architecture consists of encoding and decoding substructures in combination with the data augmentation scheme via the scale space induced by the heat equation. The quantitative analysis using the cardiac MRI dataset indicates that the proposed algorithm achieves better accuracy in the delineation of the left ventricles, which demonstrates the potential of the algorithm in the application of the whole heart segmentation as a compute-aided diagnosis system for the cardiac diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fahad Alharbi ◽  
Khalil El Hindi ◽  
Saad Al Ahmadi ◽  
Hussien Alsalamn

Noise in training data increases the tendency of many machine learning methods to overfit the training data, which undermines the performance. Outliers occur in big data as a result of various factors, including human errors. In this work, we present a novel discriminator model for the identification of outliers in the training data. We propose a systematic approach for creating training datasets to train the discriminator based on a small number of genuine instances (trusted data). The noise discriminator is a convolutional neural network (CNN). We evaluate the discriminator’s performance using several benchmark datasets and with different noise ratios. We inserted random noise in each dataset and trained discriminators to clean them. Different discriminators were trained using different numbers of genuine instances with and without data augmentation. We compare the performance of the proposed noise-discriminator method with seven other methods proposed in the literature using several benchmark datasets. Our empirical results indicate that the proposed method is very competitive to the other methods. It actually outperforms them for pair noise.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Suxia Cui ◽  
Yu Zhou ◽  
Yonghui Wang ◽  
Lujun Zhai

Recently, human being’s curiosity has been expanded from the land to the sky and the sea. Besides sending people to explore the ocean and outer space, robots are designed for some tasks dangerous for living creatures. Take the ocean exploration for an example. There are many projects or competitions on the design of Autonomous Underwater Vehicle (AUV) which attracted many interests. Authors of this article have learned the necessity of platform upgrade from a previous AUV design project, and would like to share the experience of one task extension in the area of fish detection. Because most of the embedded systems have been improved by fast growing computing and sensing technologies, which makes them possible to incorporate more and more complicated algorithms. In an AUV, after acquiring surrounding information from sensors, how to perceive and analyse corresponding information for better judgement is one of the challenges. The processing procedure can mimic human being’s learning routines. An advanced system with more computing power can facilitate deep learning feature, which exploit many neural network algorithms to simulate human brains. In this paper, a convolutional neural network (CNN) based fish detection method was proposed. The training data set was collected from the Gulf of Mexico by a digital camera. To fit into this unique need, three optimization approaches were applied to the CNN: data augmentation, network simplification, and training process speed up. Data augmentation transformation provided more learning samples; the network was simplified to accommodate the artificial neural network; the training process speed up is introduced to make the training process more time efficient. Experimental results showed that the proposed model is promising, and has the potential to be extended to other underwear objects.


2021 ◽  
pp. 1-11
Author(s):  
Ashok Kumar Rai ◽  
Radha Senthilkumar ◽  
A. Kanan

Face recognition is one of the best applications of computer recognition and recent smart house applications. Therefore, it draws considerable attention from researchers. Several face recognition algorithms have been proposed in the last decade, but these methods did not give the efficient outcome. Therefore, this work introduces a novel constructive training algorithm for smart face recognition in door locking applications. The proposed Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization (FRNN-MDSO) Strategy is applied to face recognition application. The steady preparing system has been utilized where the training designs are adapted steadily and are divided into completely different modules. The facial feature process works on global and local features. After the feature extraction and selection process, employ the improved classifier followed by the Framed Recurrent Neural Network classification technique. Finally, the face image based on the feature library can be identified. The proposed Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization starts with a single training pattern using Bidirectional Encoder Representations from Transformers (BERT) model. During network training, the Training Data (TD) decrease the Mean Square Error (MSE) while the matching process increases the algorithms generated which are trapped at the local minimum. The training data have been trained to increase the number of input forms (one after the other) until all the forms are selected and trained. An FRNN-MDSO based face recognition system is built, and face recognition is tested using hyperspectral Database parameters. The simulation results indicate that the proposed method acquires the associate grade optimum design of FRNN with MDSO methodology using the present constructive algorithm and prove the proposed FRNN-MDSO method’s effectiveness compared to the conventional architecture methods.


Sign in / Sign up

Export Citation Format

Share Document