scholarly journals Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms with Battery Energy Storage Systems

Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 986 ◽  
Author(s):  
Ho-Young Kim ◽  
Mun-Kyeom Kim ◽  
San Kim
2019 ◽  
Vol 122 ◽  
pp. 04004
Author(s):  
Daniel Villanueva ◽  
Andrés E. Feijóo ◽  
Neeraj D. Bokde

The wind is an uncontrollable primary resource, although its energy can be stored. This fact can be used for the design of strategies for a better management of electric power networks. An option for achieving this goal is to install Battery Energy Storage Systems (BESS) in the wind farms (WF). When dealing with WFs combined with BESSs the most important is to manage the power production in order to meet the requirements of the network or those related with the owner of the plant. Both challenges constitute an optimization problem. This paper proposes an Evolutionary Algorithm (EA) to solve it, where a fitness function must be maximized under the consideration of certain constraints. The fitness function depends on the target of the power production, which may be either to help the network become more stable or to maximize the profit, assessing each scenario and accepting the best one. The constraints of the optimization problem are related to the levels of the BESSs: the maximum power transferred to or from it and the output power of the plant.


Theoretical review of various topologies of high voltage DC links in application to off shore wind forms has been studied and analysed. In addition to that, various types of high voltage DC links such as back to back, two terminal, multi-terminal systems has been covered under this study. The Line-Commutated Converters, Voltage Source Converter, Modular Multi-Level Converter as well as some of advanced hybrid high voltage DC topologies in application to off shore wind forms has been reviewed. This study covers complication arising from large-scale wind power generation. The review paper also points out the scope of future research in high voltage DC converters.


2020 ◽  
Vol 10 (5) ◽  
pp. 1833
Author(s):  
Ali Raza ◽  
Muhammad Younis ◽  
Yuchao Liu ◽  
Ali Altalbe ◽  
Kumars Rouzbehi ◽  
...  

Although various topologies of multi-terminal high voltage direct current (MT-HVdc) transmission systems are available in the literature, most of them are prone to loss of flexibility, reliability, stability, and redundancy in the events of grid contingencies. In this research, two new wind farms and substation ring topology (2WF-SSRT) are designed and proposed to address the aforementioned shortcomings. The objective of this paper is to investigate MT-HVdc grid topologies for integrating large offshore wind farms with an emphasis on power loss in the event of a dc grid fault or mainland alternating current (ac)grid abnormality. Standards and control of voltage source converter (VSC) based MT-HVdc grids are defined and discussed. High voltage dc switch-gear and dc circuit topologies are appraised based on the necessity of dc cables, HVdc circuit breakers, and extra offshore platforms. In this paper, the proposed topology is analyzed and compared with the formers for number and ratings of offshore substations, dc breakers, ultra-fast mechanical actuators, dc circuits, cost, flexibility, utilization, and redundancy of HVdc links. Coordinated operation of various topologies is assessed and compared with respect to the designed control scheme via a developed EMTDC/PSCAD simulation platform considering three fault scenarios: dc fault on transmission link connecting the wind farm to mainland power converters, dc fault within substation ring of VSC-HVdc stations, and ultimate disconnection of grid side VSC station. Results show that 2WF-SSRT is a promising topology for future MT-HVdc grids.


2002 ◽  
Vol 26 (6) ◽  
pp. 383-395 ◽  
Author(s):  
Vassilios G. Agelidis ◽  
Christos Mademlis

The technology associated with offshore wind farms is discussed in detail. First, the various offshore wind turbines are reviewed and the factors influencing their characteristics are outlined in comparison with their onshore counterparts. This overview serves as a basis for the discussion that follows regarding the possible electrical connection within the farm, and between the farm and the grid. Voltage-source converter-based HV DC connection is compared with HVAC connection. Finally, a novel multilevel converter-based HVDC system, based on flying capacitor multilevel converters is proposed, as a possible interface between the farm and the grid.


Sign in / Sign up

Export Citation Format

Share Document