scholarly journals High Voltage DC Transmission Systems for Offshore Wind Farms with Different Topologies

Theoretical review of various topologies of high voltage DC links in application to off shore wind forms has been studied and analysed. In addition to that, various types of high voltage DC links such as back to back, two terminal, multi-terminal systems has been covered under this study. The Line-Commutated Converters, Voltage Source Converter, Modular Multi-Level Converter as well as some of advanced hybrid high voltage DC topologies in application to off shore wind forms has been reviewed. This study covers complication arising from large-scale wind power generation. The review paper also points out the scope of future research in high voltage DC converters.

2020 ◽  
Vol 10 (5) ◽  
pp. 1833
Author(s):  
Ali Raza ◽  
Muhammad Younis ◽  
Yuchao Liu ◽  
Ali Altalbe ◽  
Kumars Rouzbehi ◽  
...  

Although various topologies of multi-terminal high voltage direct current (MT-HVdc) transmission systems are available in the literature, most of them are prone to loss of flexibility, reliability, stability, and redundancy in the events of grid contingencies. In this research, two new wind farms and substation ring topology (2WF-SSRT) are designed and proposed to address the aforementioned shortcomings. The objective of this paper is to investigate MT-HVdc grid topologies for integrating large offshore wind farms with an emphasis on power loss in the event of a dc grid fault or mainland alternating current (ac)grid abnormality. Standards and control of voltage source converter (VSC) based MT-HVdc grids are defined and discussed. High voltage dc switch-gear and dc circuit topologies are appraised based on the necessity of dc cables, HVdc circuit breakers, and extra offshore platforms. In this paper, the proposed topology is analyzed and compared with the formers for number and ratings of offshore substations, dc breakers, ultra-fast mechanical actuators, dc circuits, cost, flexibility, utilization, and redundancy of HVdc links. Coordinated operation of various topologies is assessed and compared with respect to the designed control scheme via a developed EMTDC/PSCAD simulation platform considering three fault scenarios: dc fault on transmission link connecting the wind farm to mainland power converters, dc fault within substation ring of VSC-HVdc stations, and ultimate disconnection of grid side VSC station. Results show that 2WF-SSRT is a promising topology for future MT-HVdc grids.


2002 ◽  
Vol 26 (6) ◽  
pp. 383-395 ◽  
Author(s):  
Vassilios G. Agelidis ◽  
Christos Mademlis

The technology associated with offshore wind farms is discussed in detail. First, the various offshore wind turbines are reviewed and the factors influencing their characteristics are outlined in comparison with their onshore counterparts. This overview serves as a basis for the discussion that follows regarding the possible electrical connection within the farm, and between the farm and the grid. Voltage-source converter-based HV DC connection is compared with HVAC connection. Finally, a novel multilevel converter-based HVDC system, based on flying capacitor multilevel converters is proposed, as a possible interface between the farm and the grid.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3496
Author(s):  
Subhamoy Bhattacharya ◽  
Suryakanta Biswal ◽  
Muhammed Aleem ◽  
Sadra Amani ◽  
Athul Prabhakaran ◽  
...  

Large scale offshore wind farms are relatively new infrastructures and are being deployed in regions prone to earthquakes. Offshore wind farms comprise of both offshore wind turbines (OWTs) and balance of plants (BOP) facilities, such as inter-array and export cables, grid connection etc. An OWT structure can be either grounded systems (rigidly anchored to the seabed) or floating systems (with tension legs or catenary cables). OWTs are dynamically-sensitive structures made of a long slender tower with a top-heavy mass, known as Nacelle, to which a heavy rotating mass (hub and blades) is attached. These structures, apart from the variable environmental wind and wave loads, may also be subjected to earthquake related hazards in seismic zones. The earthquake hazards that can affect offshore wind farm are fault displacement, seismic shaking, subsurface liquefaction, submarine landslides, tsunami effects and a combination thereof. Procedures for seismic designing OWTs are not explicitly mentioned in current codes of practice. The aim of the paper is to discuss the seismic related challenges in the analysis and design of offshore wind farms and wind turbine structures. Different types of grounded and floating systems are considered to evaluate the seismic related effects. However, emphasis is provided on Tension Leg Platform (TLP) type floating wind turbine. Future research needs are also identified.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kai Liao ◽  
Zheng-you He ◽  
Bin Sun

Large-scale offshore wind farms are integrated with onshore ac grids through the voltage source converter based high voltage direct current (VSC-HVDC) transmission system. The impact on the stability of the ac grids will be significant. The small signal model of a wind farm connected with voltage source converter based dc transmission system is studied in this paper. A suitable model for small signal stability analysis is presented. The control system of wind generator and the HVDC system has also been modeled in this model for small signal stability analysis. The impact of the control parameters on the network stability is investigated.


2008 ◽  
Vol 32 (2) ◽  
pp. 103-113 ◽  
Author(s):  
A. Arulampalam ◽  
G. Ramtharan ◽  
N. Caliao ◽  
J.B. Ekanayake ◽  
N. Jenkins

Effective Onshore-Fault Ride Through was demonstrated by simulation for a Fixed Speed Induction Generator (FSIG) offshore wind farm connected through a Voltage Source Converter HVDC link. When a terrestrial grid fault occurs, power through the onshore converter reduces and the DC link voltage increases. A control system was then used to block the offshore converter. The offshore AC network voltage was reduced to achieve rapid power rejection. Reactive power at the onshore converter was controlled to support the AC network voltage according to the GB Grid Code requirements. Two cases, a 200 ms terrestrial fault and a 50% retained voltage fault of duration 710 ms, at the grid connection point were studied. The simulation results show that power blocking at the offshore converter was effective and the DC link voltage was controlled.


2015 ◽  
Vol 51 (4) ◽  
pp. 2743-2752 ◽  
Author(s):  
Zhuo-di Wang ◽  
Ke-Jun Li ◽  
Jing-guo Ren ◽  
Li-Jun Sun ◽  
Jian-Guo Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document