scholarly journals A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2737 ◽  
Author(s):  
Lei Chai ◽  
Savvas Tassou

Heat exchanger performance can be improved via the introduction of vortex generators to the airside surface, based on the mechanism that the generated longitudinal vortices can disrupt the boundary layer growth, increase the turbulence intensity and produce secondary fluid flows over the heat transfer surfaces. The key objective of this paper is to provide a critical overview of published works relevant to such heat transfer surfaces. Different types of vortex generator are presented, and key experimental techniques and numerical methodologies are summarized. Flow phenomena associated with vortex generators embedded, attached, punched or mounted on heat transfer surfaces are investigated, and the thermohydraulic performance (heat transfer and pressure drop) of four different heat exchangers (flat plate, finned circular-tube, finned flat-tube and finned oval-tube) with various vortex-generator geometries, is discussed for different operating conditions. Furthermore, the thermohydraulic performance of heat transfer surfaces with recently proposed vortex generators is outlined and suggestions on using vortex generators for airside heat transfer augmentation are presented. In general, the airside heat transfer surface performance can be substantially enhanced by vortex generators, but their impact can also be significantly influenced by many parameters, such as Reynolds number, tube geometry (shape, diameter, pitch, inline/staggered configuration), fin type (plane/wavy/composite, with or without punched holes), and vortex-generator geometry (shape, length, height, pitch, attack angle, aspect ratio, and configuration). The finned flat-tube and finned oval-tube heat exchangers with recently proposed vortex generators usually show better thermohydraulic performance than finned circular tube heat exchangers. Current heat exchanger optimization approaches are usually based on the thermohydraulic performance alone. However, to ensure quick returns on investment, heat exchangers with complex geometries and surface vortex generators, should be optimized using cost-based objective functions that consider the thermohydraulic performance alongside capital cost, running cost of the system as well as safety and compliance with relevant international standards for different applications.

2014 ◽  
Vol 18 (3) ◽  
pp. 863-874 ◽  
Author(s):  
Xueping Du ◽  
Yantao Yin ◽  
Min Zeng ◽  
Pengqing Yu ◽  
Qiuwang Wang ◽  
...  

A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90?, 60 ?, 45?, and 30?) are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90?) has the worst performance while 45? and 30? has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60?, while the best performance occurred at 45? and 90? at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.


2021 ◽  
pp. 3-19
Author(s):  
Dusan P. Sekulic

Abstract Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.


1966 ◽  
Vol 88 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Franz J. Schulenberg

Finned circular tubes have been used exclusively in air-cooled heat exchangers built for the American petroleum and chemical industries. In Europe, however, other tube geometries, in particular, finned elliptical tubes, have been used with great success. In this paper, the theory of the finned elliptical tube and its application in air-cooled heat exchangers are discussed. Finned circular and elliptical tubes are compared; it is shown that the developed heat transfer surface alone is not a sufficient criterion for predicting the performance of an air-cooled fin-tube heat exchanger.


Author(s):  
Mitsutoshi Tendo ◽  
Tetsuaki Takeda

There are several methods for heat transfer enhancement. For example, there are attaching various fins on the heat transfer surface, processing the surface roughly, inserting twisted tape, and so on. These methods increase heat transfer coefficient or area by manufacturing of the heat transfer surface. However, it has to take into consideration the deterioration of the structure strength by attaching the fins on the tube surface with the design of the heat exchanger. The objective of this study is to clarify characteristics of heat transfer and pressure drop in the channel inserted metallic wire with high porosity. A heat transfer experiment has been performed using a horizontal circular tube to obtain the heat transfer characteristics in the channel inserted copper wire. This paper describes the heat transfer and flow characteristics of a heat exchanger tube filled with a high porous material. Fine copper wire (diameter: 0.5 mm) was inserted in a circular tube dominated by thermal conduction and forced convection. Working fluid was air. Hydraulic equivalent diameter was cited as the characteristic length in Nusselt number and Reynolds number. From the results obtained in this experiment, it was found that an amount of heat transfer in the tube with the copper wire was larger than that without one. An effectiveness of heat transfer enhancement increased with the temperature of the heated wall. The amount of heat transfer in the circular tube inserted copper wire, which has 0.993–0.998 of porosity, increased about 15% comparing with the tube having a smooth wall surface under the condition of the constant heat flux and lower than 170°C of the wall temperature.


Author(s):  
Shubham Agarwal ◽  
R. P. Sharma

This is a novel study for assessing the heat transfer enhancement in a multi-row inline-tube heat exchanger using hybrid vortex generator (VG) arrays, i.e., rectangular winglet pairs (RWPs) with different geometrical configurations installed in coherence for enhanced heat transfer. The three-dimensional numerical study uses a full scale seven-tube inline heat exchanger model. The effect of roll of rectangular winglet VG on heat transfer enhancement is analyzed and optimized roll angle is determined for maximum heat transfer enhancement. Four different configurations are analyzed and compared in this regard: (a) single RWP (no roll); (b) 3RWP-inline array(alternating tube row with no roll of VGs); (c) single RWP (with optimized roll angle VGs); and (d) 3RWP-inline array(alternating tube row with all VGs having optimized roll angle). It was found that the inward roll of VGs increased the heat transfer from the immediately downstream tube but reduced heat transfer enhancement capability of other VG pairs downstream. Further, four different hybrid configurations of VGs were analyzed and the optimum configuration was obtained. For the optimized hybrid configuration at Re = 670, RWP with optimized roll angle increased heat transfer by 17.5% from the tube it was installed on and by 42% from the immediately downstream tube. Increase in j/ƒ of 36.7% is obtained by use of hybrid VGs in the optimized hybrid configuration. The deductions from the current study are supposed to well enhance the performance of heat exchangers with different design configurations.


1993 ◽  
Vol 115 (3) ◽  
pp. 584-591 ◽  
Author(s):  
B. Bansal ◽  
H. Mu¨ller-Steinhagen

Crystallization fouling of calcium sulfate was investigated in a plate and frame heat exchanger. The effects of flow velocity, wall temperature, and CaSO4, concentration on the fouling rates have been investigated and the distribution of scale along the heat transfer surface has been observed. The measured fouling curves are compared with predictions from a surface reaction controlled model.


Sign in / Sign up

Export Citation Format

Share Document