scholarly journals A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2791 ◽  
Author(s):  
Abbes Kihal ◽  
Fateh Krim ◽  
Billel Talbi ◽  
Abdelbaset Laib ◽  
Abdeslem Sahli

This contribution considers an improved control scheme for three-phase two-stage grid-tied photovoltaic (PV) power systems based on integral sliding mode control (ISMC) theory. The proposed control scheme consists of maximum power point tracking (MPPT), DC-Link voltage regulation and grid current synchronization. A modified voltage-oriented maximum power point tracking (VO-MPPT) method based on ISMC theory is proposed for design of an enhanced MPPT under irradiation changes. Moreover, a novel DC-Link voltage controller based on ISMC theory is proposed to achieve good regulation of DC-Link voltage over its reference. To inject the generated PV power into the grid with high quality, a voltage-oriented control based on space vector modulation (SVM) and ISMC (VOC-ISMC-SVM) has been developed to control the grid current synchronization. Numerical simulations are performed in a MATLAB/SimulinkTM (R2009b, MathWorks, Natick, MA, USA) environment to evaluate the proposed control strategy. In comparison with conventional control schemes, the developed control strategy provides an accurate maximum power point (MPP) tracking with less power oscillation as well as a fast and an accurate DC-Link regulation under varying irradiation conditions. Moreover, the transfer of the extracted power into the grid is achieved with high quality.

Author(s):  
Abbas Kihal ◽  
Fateh Krim ◽  
Billel Talbi ◽  
Abdelbaset Laib ◽  
Abdeslem Sahli

This contribution considers an improved control scheme for three-phase two-stage grid-tied photovoltaic (PV) power system based on integral sliding mode control (ISMC) theory. The proposed control scheme consists of maximum power point tracking (MPPT), DC-Link voltage regulation and grid currents synchronization. A modified voltage-oriented maximum power point tracking (VO-MPPT) method based on ISMC theory is proposed for design of an enhanced MPPT under irradiation changes. Moreover, a novel DC-Link voltage control based on ISMC theory is proposed in order to achieve good regulation of DC-Link voltage over its reference. To inject the generated PV power into the grid with high quality, a voltage oriented control based on space vector modulation (SVM) and ISMC (VOC-ISMC-SVM) has been developed to control the grid currents synchronization. Numerical simulations are performed in Matlab/SimulinkTM environment in order to evaluate the proposed control strategy. In comparison with conventional control scheme, the developed control strategy provides an accurate MPP tracking with less power oscillation as well as a fast and an accurate DC-Link regulation under climatic conditions variations. Moreover, the transfer of the extracted power into the grid is achieved with high quality.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 108 ◽  
Author(s):  
Hina Gohar Ali ◽  
Ramon Vilanova Arbos ◽  
Jorge Herrera ◽  
Andrés Tobón ◽  
Julián Peláez-Restrepo

In this paper, nonlinear sliding mode control (SMC) techniques formulated for extracting maximum power from a solar photovoltaic (PV) system under variable environmental conditions employing the perturb and observe (P and O) maximum power point tracking (MPPT) technique are discussed. The PV system is connected with load through the boost converter. A mathematical model of the boost converter is derived first, and based on the derived model, a SMC is formulated to control the gating pulses of the boost converter switch. The closed loop system stability is verified through the Lyapunov stability theorem. The presented control scheme along with the solar PV system is simulated in MATLAB (matric laboratory) (SMC controller and PWM (Pulse Width Modulation) part) and PSIM (Power electronics simulations) (solar PV and MPPT algorithm) environments using the Simcoupler tool. The simulation results of the proposed controller (SMC) are compared with the classical proportional integral derivative (PID) control scheme, keeping system parameters and environmental parameters the same.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 896-912
Author(s):  
Ravichandran Chinnappan ◽  
Premalatha Logamani ◽  
Rengaraj Ramasubbu

This article presents a reliable and efficient photovoltaic sliding mode voltage-controlled maximum power point tracking DC-DC converter–active power filter integration system to supply real power to grid. This integrated active power filter system performs power quality enhancement features to compensate current harmonics to make distortion-free grid supply current and reactive power employing nonlinear loads. The proposed proportional–integral–derivative–based sliding mode controller is designed with fixed-frequency pulse-width modulation based on equivalent control approach. The main objective of this paper is to design a photovoltaic system with a new sliding surface to force the photovoltaic voltage to follow the reference maximum power point voltage with the alleviation of slow transient response and disadvantages of chattering effects of variable-frequency hysteresis modulation sliding mode controller–maximum power point tracking. The perturbations caused by the uncertainties in climatic conditions and converter output bulk oscillations during grid integration are also mitigated. The features of the proposed photovoltaic–active power filter integration system are confirmed at different operating conditions through PSIM simulation software, and its performance is also compared with a conventional variable-frequency sliding mode-controlled maximum power point tracking. The obtained simulation and experimental results give good dynamic response under various operating conditions of environmental and local load conditions.


Sign in / Sign up

Export Citation Format

Share Document