scholarly journals Improved Performance of Dye-Sensitized Solar Cells with TiO2 Nanoparticles/Zn-Doped TiO2 Hollow Fiber Photoanodes

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2922 ◽  
Author(s):  
Zainal Arifin ◽  
Suyitno Suyitno ◽  
Syamsul Hadi ◽  
Bayu Sutanto

In this study, dye-sensitized solar cells (DSSCs) were fabricated using double-layer photoanodes consisting of TiO2 nanoparticles (NPs) and Zn-doped TiO2 hollow fibers (HFs). The TiO2 HFs were prepared by co-axial electrospinning and used as the light-scattering layer in the DSSC. The thickness variations of the TiO2 NP and Zn-doped TiO2 HF photoanode layers affect the performance of the DSSC, especially the short-circuit photocurrent density. The thickness of the TiO2 NP layer significantly affected the absorbance of photons and N719 dye molecules in the double-layer photoanode, while that of the Zn-doped TiO2 HF layer affected the scattering of light, as indicated by the low light transmittance in the photoanode. Conventional DSSCs consist of single-layer photoanodes, and exhibit relatively low efficiency, i.e., 1.293% and 0.89% for TiO2 NP and Zn-doped TiO2 HF, respectively. However, herein, the highest efficiency of the DSSC (3.122%) was achieved with a 15 μm NP-5 μm HF photoanode, for which the short-circuit photocurrent density, open-circuit photovoltage, and fill factor were 15.81 mA/cm2, 0.566 V, and 34.91%, respectively.

2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


2013 ◽  
Vol 750-752 ◽  
pp. 873-876
Author(s):  
Zong Hu Xiao ◽  
Wei Zhong ◽  
Shun Jian Xu ◽  
Yong Ping Luo

Zinc oxide (ZnO) with various morphologies consisting of nanoparticles with a diameter of approximately 20 nm have been successfully prepared by hydrothermal method from zinc nitrate (Zn (NO3)2)/carbamide (CO(NH2)2) solution. The morphologies and phase structures of the as-prepared ZnO samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD). Results show that the morphologies of the as-prepared ZnO are successively present in broom-like, cabbage-like, chinese cabbage-like, honeycomb-like with the increase of the CO(NH2)2concentration from 0.1 M to 1 M. The photovoltaic performances of dye-sensitized solar cells, based on ZnO with various morphologies as the photoelectrodes, are unobvious. With the morphologies of ZnO evolving, the short circuit photocurrent density (Jsc) increases from 2.35 to 3.72 mA/cm2, the fill factor (FF) increases from 0.400 to 0.570, and the corresponding conversion efficiency (η) varies from 0.520 % to 1.200 %. The lowηmay be due to the formation of the Zn2+/dye polymers.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mengmei Pan ◽  
Hanjun Liu ◽  
Zhongyu Yao ◽  
Xiaoli Zhong

Trace amount Ca-doped TiO2films were synthesized by the hydrothermal method and applied as photoanodes of dye-sensitized solar cells (DSSCs). To prepare Ca-doped TiO2film electrodes, several milliliters of Ca(NO3)2solution was added in TiO2solution during the hydrolysis process. The improvements of DSSCs were confirmed by photocurrent density-voltage (J-V) characteristics, electrochemical impedance spectroscopy (EIS) measurements. Owing to the doping effect of Ca, the Ca-doped TiO2thin film shows power conversion efficiency of 7.45% for 50 ppm Ca-doped TiO2electrode, which is higher than that of the undoped TiO2film (6.78%) and the short-circuit photocurrent density(Jsc)increases from 13.68 to 15.42 mA·cm−2. The energy conversion efficiency and short-circuit current density(Jsc)of DSSCs were increased due to the faster electron transport in the Ca-doped TiO2film. When Ca was incorporated into TiO2films, the electrons transport faster and the charge collection efficiencyηccis higher than that in the undoped TiO2films.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Joe Otsuki ◽  
Yusho Takaguchi ◽  
Daichi Takahashi ◽  
Palanisamy Kalimuthu ◽  
Surya Prakash Singh ◽  
...  

We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs). Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident photon-to-current conversion efficiency (IPCE) spectrum was consistent with the absorption spectrum and resulted in a high short-circuit photocurrent density (Jsc) of 8.8 mA cm-2. PK0002 showed higher IPCE values than PK0003 in the 520–800 nm region. Under standard AM 1.5 irradiation (100 mW cm-2) and using an electrolyte consisting of 0.6 M dimethylpropyl-imidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile, a solar cell containing sensitizer PK0002 yielded a short-circuit photocurrent density of 7.7 mA cm-2, an open-circuit photovoltage of 0.57 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.1%.


2015 ◽  
Vol 182 ◽  
pp. 230-237 ◽  
Author(s):  
Haijun Su ◽  
Yu-Ting Huang ◽  
Ya-Huei Chang ◽  
Peng Zhai ◽  
Nga Yu Hau ◽  
...  

2018 ◽  
Vol 29 (11) ◽  
pp. 9108-9116 ◽  
Author(s):  
Ashique Kotta ◽  
Sajid Ali Ansari ◽  
Nazish Parveen ◽  
H. Fouad ◽  
Othman Y. Alothman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document