scholarly journals An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3510 ◽  
Author(s):  
Jiaojiao Feng ◽  
Weizhen Wang ◽  
Jing Li

Solar energy is one of the most widely used renewable energy sources in the world and its development and utilization are being integrated into people’s lives. Therefore, accurate solar radiation data are of great significance for site-selection of photovoltaic (PV) power generation, design of solar furnaces and energy-efficient buildings. Practically, it is challenging to get accurate solar radiation data because of scarce and uneven distribution of ground-based observation sites throughout the country. Many artificial neural network (ANN) estimation models are therefore developed to estimate solar radiation, but the existing ANN models are mostly based on conventional meteorological data; clouds, aerosols, and water vapor are rarely considered because of a lack of instrumental observations at the conventional meteorological stations. Based on clouds, aerosols, and precipitable water-vapor data from Moderate Resolution Imaging Spectroradiometer (MODIS), along with conventional meteorological data, back-propagation (BP) neural network method was developed in this work with Levenberg-Marquardt (LM) algorithm (referred to as LM-BP) to simulate monthly-mean daily global solar radiation (M-GSR). Comparisons were carried out among three M-GSR estimates, including the one presented in this study, the multiple linear regression (MLR) model, and remotely-sensed radiation products by Cloud and the Earth’s radiation energy system (CERES). The validation results indicate that the accuracy of the ANN model is better than that of the MLR model and CERES radiation products, with a root mean squared error (RMSE) of 1.34 MJ·m−2 (ANN), 2.46 MJ·m−2 (MLR), 2.11 MJ·m−2 (CERES), respectively. Finally, according to the established ANN-based method, the M-GSR of 36 conventional meteorological stations for 12 months was estimated in 2012 in the study area. Solar radiation data based on the LM-BP method of this study can provide some reference for the utilization of solar and heat energy.

2018 ◽  
Vol 153 ◽  
pp. 07004
Author(s):  
S.Shanmuga Priya ◽  
Arunabh Borkataky ◽  
Sneha Reddy ◽  
I. Thirunavukkarasu

The demand for more efficient and environmentally benign, non-conventional sources of energy came into picture due to increasing demands for human comforts. Solar energy is now the ultimate option. In this paper, the instruments used to measure the solar radiation at Innovation Centre, MIT Manipal were connected to a Raspberry Pi to access the data remotely. Genetic Algorithms were formulated, so that the monthly mean global solar radiation in Manipal can be effectively estimated. Meteorological data such as humidity, temperature, wind speed, etc. were used as inputs to train the networks. A successful network was made between the data loggers and the Raspberry Pi. The data collected by the data loggers from the devices are transmitted to the Raspberry Pi which in turn sends the data to an internal server. The Raspberry Pi can be accessed using any SSH client such as PuTTY. The meteorological data was collected for the years 2010-2014 in order to formulate the Artificial Intelligence models. The validity of the formulated models were checked by comparing the measured data with the estimated data using tools such as RMSE, correlation coefficient, etc. The modelling of solar radiation using GA was carried out in GeneXpro tools version 5.0.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Olusola Samuel Ojo ◽  
Babatunde Adeyemi

In this paper, surface data meteorological were used as input variables to create, train and validate the network in which global solar radiation serves as a target. These surface data were obtained from the archives of the European centre for Medium-Range weather forecast for a span of 36 years (1980-2015) over Nigeria. The research aims to evaluate the predictive ability of the nonlinear autoregressive neural network with exogenous input (NARX) model compared with the multivariate linear regression (MLR) model using the statistical metrics. Model selection analysis using the index of agreement (dr) metric showed that the MLR and NARX models have values of 0.710 and 0.853 in the Sahel, 0.748 and 0.849 in the Guinea Savannah, 0.664 and 0.791 in the Derived Savannah, 0.634 and 0.824 in the Coastal regions, and 0.771 and 0.806 in entire Nigeria respectively. Meanwhile, error analyses of the models using root mean square errors (RMSE) showed the values of 1.720 W/m2 and 1.417 in the Sahel region, 2.329 W/m2 and 1.985 W/m2 in the Guinea Savannah region, 2.459 W/m2 and 2.272 W/m2 in the Derived Savannah region, 2.397 W/m2 and 2.261 W/m2 in the Coastal region and 1.691 W/m2 and 1.600 W/m2 in entire Nigeria for MLR and NARX models respectively. These showed that the NARX model has higher dr values and lower RMSE values over all the climatic regions and entire Nigeria than the MLR model. Finally, it can be inferred from these metrics that the NARX model gives a better prediction of global solar radiation than the traditional common MLR models in all the zones in Nigeria.


2010 ◽  
Vol 44-47 ◽  
pp. 1853-1861 ◽  
Author(s):  
W.S. Ou ◽  
K.T. Huang ◽  
Chi Chang Liao

Solar radiation data is an important consideration factor in building environment planning. This study focused on the regional characteristics of global solar radiation of Taiwan. The research utilized the raw meteorological data meseaursed by the Central Weather Bureau to establish reliable solar radiation data of weather stations by means of statistic analysis. A total of weather station’s data are used where their geographical location are evenly distributed from northern to southern Taiwan. The results of this study will presented the diagrams of annual and monthly averaged solar radiation in Taiwan. Geographical distribution of inter-annual trend of global solar radiation during this period was also presented in this paper. It can be used for further study of the climate zoning comparing with other climate conditions. Furthermore, researchers of solar cell design, building energy, shading design, site planning, etc. can utilize the distribution diagram to fetch reliable solar radiation values to carry on reasonable quantitative analysis.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Boluwaji M. Olomiyesan ◽  
Onyedi D. Oyedum

In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005) of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination (R2). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.


2021 ◽  
Author(s):  
Sascha Flaig ◽  
Timothy Praditia ◽  
Alexander Kissinger ◽  
Ulrich Lang ◽  
Sergey Oladyshkin ◽  
...  

<p>In order to prevent possible negative impacts of water abstraction in an ecologically sensitive moor south of Munich (Germany), a “predictive control” scheme is in place. We design an artificial neural network (ANN) to provide predictions of moor water levels and to separate hydrological from anthropogenic effects. As the moor is a dynamic system, we adopt the „Long short-term memory“ architecture.</p><p>To find the best LSTM setup, we train, test and compare LSTMs with two different structures: (1) the non-recurrent one-to-one structure, where the series of inputs are accumulated and fed into the LSTM; and (2) the recurrent many-to-many structure, where inputs gradually enter the LSTM (including LSTM forecasts from previous forecast time steps). The outputs of our LSTMs then feed into a readout layer that converts the hidden states into water level predictions. We hypothesize that the recurrent structure is the better structure because it better resembles the typical structure of differential equations for dynamic systems, as they would usually be used for hydro(geo)logical systems. We evaluate the comparison with the mean squared error as test metric, and conclude that the recurrent many-to-many LSTM performs better for the analyzed complex situations. It also produces plausible predictions with reasonable accuracy for seven days prediction horizon.</p><p>Furthermore, we analyze the impact of preprocessing meteorological data to evapotranspiration data using typical ETA models. Inserting knowledge into the LSTM in the form of ETA models (rather than implicitly having the LSTM learn the ETA relations) leads to superior prediction results. This finding aligns well with current ideas on physically-inspired machine learning.</p><p>As an additional validation step, we investigate whether our ANN is able to correctly identify both anthropogenic and natural influences and their interaction. To this end, we investigate two comparable pumping events under different meteorological conditions. Results indicate that all individual and combined influences of input parameters on water levels can be represented well. The neural networks recognize correctly that the predominant precipitation and lower evapotranspiration during one pumping event leads to a lower decrease of the hydrograph.</p><p>To further demonstrate the capability of the trained neural network, scenarios of pumping events are created and simulated.</p><p>In conclusion, we show that more robust and accurate predictions of moor water levels can be obtained if available physical knowledge of the modeled system is used to design and train the neural network. The artificial neural network can be a useful instrument to assess the impact of water abstraction by quantifying the anthropogenic influence.</p>


Sign in / Sign up

Export Citation Format

Share Document