scholarly journals Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 324 ◽  
Author(s):  
Philip Tafarte ◽  
Marcus Eichhorn ◽  
Daniela Thrän

Wind and solar PV have become the lowest-cost renewable alternatives and are expected to dominate the power supply matrix in many countries worldwide. However, wind and solar are inherently variable renewable energy sources (vRES) and their characteristics pose new challenges for power systems and for the transition to a renewable energy-based power supply. Using new options for the integration of high shares of vRES is therefore crucial. In order to assess these options, we model the expansion pathways of wind power and solar photovoltaics (solar PV) capacities and their impact on the renewable share in a case study for Germany. Therefore, a numerical optimization approach is applied on temporally resolved generation and consumption time series data to identify the most efficient and fastest capacity expansion pathways. In addition to conventional layouts of wind and solar PV, our model includes advanced, system-friendly technology layouts in combination with electric energy storage from existing pumped hydro storage as promising integration options. The results provide policy makers with useful insights for technology-specific capacity expansion as we identified potentials to reduce costs and infrastructural requirements in the form of power grids and electric energy storage, and to accelerate the transition to a fully renewable power sector.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1133 ◽  
Author(s):  
Philip Tafarte ◽  
Annedore Kanngießer ◽  
Martin Dotzauer ◽  
Benedikt Meyer ◽  
Anna Grevé ◽  
...  

Wind and solar PV have become the lowest-cost alternatives for power generation in many countries and are expected to dominate the renewable power supply in many regions of the world. The temporal volatility in power production from these sources leads to new challenges for a stable and secure power supply system. Possible technologies to improve the integration of wind and solar PV are electrical energy storage and the flexible power provision by bioenergy. A third option is the system-friendly layout of wind and solar PV systems and the optimized mix of wind and solar PV capacities. To assess these different options at hand, a case study was conducted covering various scenarios for a regional power supply based on a high share of wind and solar PV. State-of-the-art concepts for all the stated technologies are modelled and a numerical optimization approach is applied on temporally-resolved time series data to identify the potential role of each option and their respective interactions. Power storage was found to be most relevant in solar dominated systems, due to the diurnal generation pattern, whereas bioenergy is more suitably combined with high wind power shares due to the less regular generation pattern. System-friendly wind and solar power can reduce the need for generation capacity and flexible options by fitting generation and demand patterns better.


Author(s):  
Mykhailo Syvenko ◽  
Oleksandr Miroshnyk

A detailed substantiation of the use of electric energy storage devices in the presence of generators on renewable energy sources in the power supply system is given. The dependence of the storage parameters on the composition and priority of generation in the system is investigated. The solution of the problem of determining the parameters of electricity storage devices by means of purposeful simulation of generation parameters is considered. The results of the choice of power and capacity of the energy storage using technical and economic indicators are shown. Optimal parameters of electric energy storage devices as one of the most important means of ensuring the activity of isolated power supply systems together with selection of generating devices are determined. The results of calculations of capacity of renewable energy sources in isolated power supply systems in combination with classical energy sources are given. The necessity of using the principle of activity of the distribution electric network and the possibility of its realization is demonstrated. The optimal storage capacity as a function of the share of renewable generation, the non-integrated energy produced by renewable sources and the total storage capacity are plotted for several isolated systems. The main points of the used model of the power supply system of isolated networks are given. In the studied isolated power supply systems, wind power plants and solar power plants, which have significant unpredictability of generation, are used as generation based on renewable energy sources. The problem of undersupply of electricity to the grid by stepwise increase of generation is analysed. The results of the multi-step selection of power and energy consumption of electricity storage are determined by technical criteria.


2021 ◽  
Vol 80 (4) ◽  
pp. 216-224
Author(s):  
V. L. Nezevak

Considered are the issues of using electric energy storage system in the traction power supply of direct current of a single-track section. An overview of the main directions of domestic and foreign research in the field of using these systems to increase the capacity and energy efficiency of power supply systems is given. Modeling the operation of energy storage system in traction power supply is based on the calculation of load graphs within the boundaries of inter-substation zones, formed depending on the conditions for the passage of trains and traction load on the railway section. The main provisions of the method for choosing locations and determining the parameters of energy storage system in traction power supply are considered. On the example of one of the inter-substation zones of the Sverdlovsk railway, the influence of the power of the active sectioning station on the increase in the minimum voltage level at the pantograph of the electric rolling stock is shown. The graphs of the degree of charge and the corresponding frequency distributions are given, which make it possible to evaluate the operating conditions of the electric energy storage system depending on the conditions for the formation of the traction load, as well as the graphs of the load of the electric energy storage system and the corresponding charging characteristics for the operating conditions at the sectioning post. On the example of the section under consideration, the dependence of the discharge depth of the electric energy storage system on the nominal energy intensity is shown. Based on the results of calculations, an evaluation was made of the options for passing train batches in the even and odd direction in comparison with the schedule of the performed train operation. The range of variation of the nominal values of power and energy intensity of the electric energy storage system is obtained. Comparison of the accumulation system parameters for single- and double-track sections of railways, including those with a predominance of passenger traffic, is carried out.


2020 ◽  
Vol 2 (4) ◽  
pp. 219-230
Author(s):  
P. A. Khlyupin

Introduction: there is much concern about power supply to small and remote villages and industrial facilities, such as crude oil and gas fields, in the present-day power industry. Systems using renewable energy sources are the most innovative solutions to this problem. The need for electric energy storage units complicates the use of renewable energy sources. Versatile types of storage units, working on different principles, are in use now. Flywheels, working on the principle of mechanical accumulation of energy, are of particular interest.Methods: both traditional and advanced designs of electric energy accumulation systems are analyzed in the article. Recent advancements in machine building, power engineering and structural materials are contributed into structural elements of an electric energy accumulation system.Results and discussion: basic strengths and weaknesses of electric energy storage units were identified in the course of the analysis. The author substantiated the need for new effective electric energy storage units working on the principle of mechanical accumulation of potential and kinetic energy. The conclusion is that advanced engineering solutions, such as flywheels and energy efficient reversible electric machines, can boost the efficiency of electric power storage systems. The solution underlying the design of an energy efficient storage unit is offered to electric power industry players.Conclusion: the storage unit under development has flywheels and energy efficient reversible electric machines. It improves the energy efficiency of both classical power generation systems and those using renewable energy sources.


2012 ◽  
Vol 614-615 ◽  
pp. 829-836
Author(s):  
X. P. Chen ◽  
Y. D. Wang ◽  
J. T. Li ◽  
A. P. Roskilly

As a crucial constituent in tri-generation application, electric energy storage and power system plays an important role regarding efficient utilization of electrical energy in tri-generation. This paper presents the results showing that the optimization of electrical energy storage is able to promote the performance of tri-generation. Initial investigation, including laboratory tests and computational simulation using Dymola software, have been carried out. A case study exemplifies how diverse hybrid systems accommodate domestic power demands. The outcomes validate that the hybrid electric system consisting of generator, batteries and super capacitor can satisfy the electricity requirements for the household. it is also found that the hybrid system can supply the peak electricity demands where the integration of super capacitor can alleviate the overcharge of batteries in this application.


Sign in / Sign up

Export Citation Format

Share Document