Hybrid Electrical Storage and Power System for Household Tri-Generation Application

2012 ◽  
Vol 614-615 ◽  
pp. 829-836
Author(s):  
X. P. Chen ◽  
Y. D. Wang ◽  
J. T. Li ◽  
A. P. Roskilly

As a crucial constituent in tri-generation application, electric energy storage and power system plays an important role regarding efficient utilization of electrical energy in tri-generation. This paper presents the results showing that the optimization of electrical energy storage is able to promote the performance of tri-generation. Initial investigation, including laboratory tests and computational simulation using Dymola software, have been carried out. A case study exemplifies how diverse hybrid systems accommodate domestic power demands. The outcomes validate that the hybrid electric system consisting of generator, batteries and super capacitor can satisfy the electricity requirements for the household. it is also found that the hybrid system can supply the peak electricity demands where the integration of super capacitor can alleviate the overcharge of batteries in this application.

2020 ◽  
Vol 2020 (3) ◽  
pp. 30-36
Author(s):  
I.M. Buratynskyi ◽  
◽  
T.P. Nechaieva ◽  

In view of the dependence of power generation at photovoltaic solar power plants on the level of intensity of solar radiation and cloud cover, their operation creates a number of problems in the power system. This article describes the problems of operation of such power plants of non-guaranteed capacity during their parallel operation as a part of the Unified Energy System of Ukraine. One of the measures of stabilizing the operation of power plants of non-guaranteed capacity is the use of systems of electric energy storage. The article describes the conditions of electrical connection, which ensure the possibility of combined operation of a system of electric energy storage and a photovoltaic solar power plant. The article presents the developed mathematical model of the combined operation of a photovoltaic solar power plant (PSPP) and a system of electric energy storage. We consider the daily mode of recharging from a PSPP and discharging batteries into the power system in order to preserve the excess of generated electricity at the PSPP, which earlier was lost due to the restriction on inverters caused by the overload with photovoltaic power. The model enables one to identify the key parameters of batteries – power and capacity, taking into account the physical and technical features of the operation of battery storage as to the conversion efficiency, the number of working cycles and the depth of possible discharge depending on the structure of PSPP equipment and solar radiation intensity. Using the developed model, we determined the values of power, charging and discharging capacities of a lithium-ion system for storing electrical energy, when it works together with a 10 MWAC photovoltaic solar power plant at different overload factors. The article presents some results of technical and economic assessment of the combined operation of a PSPP and a lithium-ion system for storing electrical energy. The results showed an increase in the power and capacity of a storage device with increase in the overload factor of PSPP, which leads to the growth of cost of electrical energy at their combined work. At the same time, the amounts and quality of electricity supplied increase. Keywords: mathematical model, photovoltaic solar power plant, system of electric energy storage, cost of electricity, power system


2021 ◽  
Vol 266 ◽  
pp. 04012
Author(s):  
A. Deev ◽  
V. Lebedev

This article examines the influence of energy storage on the possibility of increasing the efficiency of a power plant on the example of the model of the power system of the Taimyr coal basin. The main elements of the power system calculated in this paper included: household consumers (township of Dixon), industrial consumers (coal mining enterprises), sources of thermal and electric energy (coal-fired combined heat and power plant). Storage equipment was selected for the storage of thermal and electrical energy in the power system, such as energy storage systems based on lithium-ion batteries and hot water storage tanks. The changes in the operation modes of the combined heat and power plant during the introduction of battery systems in the power system were evaluated, and the efficiency of the combined heat and power plant was calculated for various modes of energy storage.


Author(s):  
Syed Abid Ali Shah Bukhari ◽  
Wenping Cao ◽  
Xiangping Chen ◽  
Fayyaz Jandan ◽  
Debjani Goswami

This chapter concerns energy storage technologies. It firstly outlines two popular storage technologies, batteries and supercapacitors, while their working principles are revealed. The key issues of these two technologies, such as costs, key types, capacities, etc., are also discussed. Afterwards, a hybrid electrical energy storage (HEES) system consisting of both technologies are demonstrated where the electrical circuit is illustrated. The design of the system aims to demonstrate different characteristics of these two technologies via their charging and discharging process. A test rig is explained in detail while other components, including a load bank, an inverter, a data acquisition subsystem (both the hardware and the software) are also clarified. The experimental results are illustrated and analyzed thereafter. Also, this chapter presents several other promising technologies where their key features, pros and cons, and core applications are pointedly reviewed. The concerned storage technologies include photovoltaic (PV) systems, pumped hydro-energy storage (PHES), superconducting magnetic energy storage (SMES), gas, and other alternatives sources. The authors provide the readers with a brief insight of various energy storage technologies and the inspiration of developing a low-cost, accessible energy storage system for the reader's own purposes.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 324 ◽  
Author(s):  
Philip Tafarte ◽  
Marcus Eichhorn ◽  
Daniela Thrän

Wind and solar PV have become the lowest-cost renewable alternatives and are expected to dominate the power supply matrix in many countries worldwide. However, wind and solar are inherently variable renewable energy sources (vRES) and their characteristics pose new challenges for power systems and for the transition to a renewable energy-based power supply. Using new options for the integration of high shares of vRES is therefore crucial. In order to assess these options, we model the expansion pathways of wind power and solar photovoltaics (solar PV) capacities and their impact on the renewable share in a case study for Germany. Therefore, a numerical optimization approach is applied on temporally resolved generation and consumption time series data to identify the most efficient and fastest capacity expansion pathways. In addition to conventional layouts of wind and solar PV, our model includes advanced, system-friendly technology layouts in combination with electric energy storage from existing pumped hydro storage as promising integration options. The results provide policy makers with useful insights for technology-specific capacity expansion as we identified potentials to reduce costs and infrastructural requirements in the form of power grids and electric energy storage, and to accelerate the transition to a fully renewable power sector.


2021 ◽  
Vol 7 (2) ◽  
pp. 138
Author(s):  
Farid Dwi Murdianto ◽  
Indhana Sudiharto ◽  
Irianto Irianto ◽  
Ayu Wulandari

Battery is a very important necessity as an electrical energy storage for DC load type. However, as electric energy storage, the battery has a limit storage capacity. The battery must be recharged when the electrical energy stored in the battery has been exhausted to keep the DC load in operation. Unfortunately, batteries in different types of DC loads have different voltages and capacities. So for charging the battery also requires a different voltage. While the existing battery charger is generally static specifically for one type of battery. From this problem, the paper proposed an adaptive power charge system. A system that can adaptively charge electrical energy on batteries that have different voltages and capacities through one port. The converter used in this paper is the buck converter to lower the output voltage from the input voltage. The system uses tracking duty cycle to know the type of DC load. After knowing the type of dc load then the system determines the setting point voltage. To keep the output voltage stable, the system uses PID control. With this adaptive power charge, the charging process will be more efficient and multifunction because it can be used for various types of DC load. The system can provide an output voltage of 19 volts when connected to a laptop and provides an output voltage of 5 volts when connected to a mobile phone on setling time 10ms.


Sign in / Sign up

Export Citation Format

Share Document