scholarly journals Evaluation of the Complexity, Controllability and Observability of Heat Exchanger Networks Based on Structural Analysis of Network Representations

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 513 ◽  
Author(s):  
Daniel Leitold ◽  
Agnes Vathy-Fogarassy ◽  
Janos Abonyi

The design and retrofit of Heat Exchanger Networks (HENs) can be based on several objectives and optimisation algorithms. As each method results in an individual network topology that has a significant effect on the operability of the system, control-relevant HEN design and analysis are becoming more and more essential tasks. This work proposes a network science-based analysis tool for the qualification of controllability and observability of HENs. With the proposed methodology, the main characteristics of HEN design methods are determined, the effect of structural properties of HENs on their dynamical behaviour revealed, and the potentials of the network-based HEN representations discussed. Our findings are based on the systematic analysis of almost 50 benchmark problems related to 20 different design methodologies.

2021 ◽  
Vol 3 ◽  
Author(s):  
Jose A. Caballero ◽  
Leandro V. Pavão ◽  
Caliane B. B. Costa ◽  
Mauro A. S. S. Ravagnani

This paper presents a new algorithm for the design of heat exchanger networks (HEN) that tries to take advantage of the strengths of the sequential and simultaneous approaches. It is divided into two sequential parts. The first one is an adaptation of the transportation model (TransHEN). It maintains the concept of temperature intervals and considers the possibility of heat transfer between all the hot and cold streams inside those intervals, and at the same time it allows the a priori calculation of the logarithmic mean temperature difference between all possible heat exchanges, and therefore it maintains the area estimation linear in the model. The second step (HENDesign model), uses a superstructure that contains all the possible alternatives in which the matches predicted by the first stage model can exchange heat to design the final heat exchanger network. Unlike the sequential approach, in this model, all heat flows, temperatures, areas, etc. are reoptimized maintaining the set of matches predicted in the first stage. The model is highly nonlinear and nonconvex, however, it is relatively easy to get good results, because the model starts with the values predicted by the TransHEN model. The algorithm has been tested using fifteen benchmark problems commonly used in literature to compare the performance of heat exchanger network algorithms. In eleven out of the fifteen cases present better or equal results than the best ones reported in the open literature. In three the results presented only marginal differences in total annualized cost (lower than 0.5%) and only a difference of 2.4% in the largest one.


2004 ◽  
Vol 43 (21) ◽  
pp. 6766-6773 ◽  
Author(s):  
Medardo Serna-González ◽  
José María Ponce-Ortega ◽  
Arturo Jiménez-Gutiérrez

Author(s):  
Rodolfo Tellez ◽  
William Y. Svrcek ◽  
Brent R. Young

Process integration design methodologies have been developed and introduced to synthesise an optimum heat exchanger network (HEN) arrangement. However, controllability issues are often overlooked during the early stages of a plant design. In this paper we present a five-step procedure that involves the use of multivariable disturbance and control analyses based solely on steady-state information and with the purpose to assess process design developments and to propose control strategy alternatives appropriate and suitable for a HEN.


Sign in / Sign up

Export Citation Format

Share Document